Appunti Java

Introduzione a Java
| paradigmi della programmazione
Struttura di un programma
Classe eseguibile (metodo main)

Variabili e Data Type

Variabili

Tipi di dati primitivi
Tipi di dati interi (Literal)
Tipi di dati a virgola mobile Literal
Tipo di dato primitivo letterale(char)
Literal Boolean
Literal String

Tipi di dati interi, casting e promotion
Casting Esplicto
Conversione di Tipo all'interno delle espressioni casting e promotion

Costanti
Operatori aritmetici

Introduzione all'input
La classe Scanner

Strutture di controllo del flusso
Struttura di selezione singola if
Struttura di selezione doppia if/else
Operatori booleani
Struttura di selezione multipla switch/case
Multi-case

Operatore ternario ?:

Loop
Struttura di iterazione while
Struttura di iterazione do/while
Struttura di iterazione for
Istruzioni break, continue

Programmazione orientata agli Oggetti
Istanze
Variabili d'istanza
Costruttore
Dichiarazione e implementazioni dei metodi
metodo toString
Metodo set
Metodo get
Scope
Parametri formali
Variabili di classe (static)

Array

Dichiarazione
Inizializzazione di un array e accesso ai suoi elementi
Ciclo avanzato for-each
Utilizzare gli array nei metodi
Operazioni sugli array

La ricerca sequenziale

Riduzione

Ordinamento di un Array

Ordinamento per sostituzione(exchange sort)

La classe Arrays

Il paradigma della OOP
Incapsulamento
Ereditarieta
La parola chiave extends
Ereditarieta e costruttori
La parola chiave super
Gerarchie di classi
Upcasting, downcasting
L'operatore instanceof
Polimorfismo
Polimorfismo per metodi
Overload
Override
Il modificatore final
Binding Dinamico
Metodi per cui il binding dinamico non viene applicato
Classi astratte
Interfacce
Metodi statici (Java 8)
Metodi di default e interfacce funzionali (Java 8)

Enum in Java

Eccezioni
Gestire le Eccezioni (processare I'eccezione quando accade)
finally
Propagazione: l'istruzione throws
Lancio di eccezioni: il costrutto throw
Eccezioni definite dall'utente

Stringhe
Lunghezza della stringa
Estrazione di caratteri da una stringa
Ricerca di una stringa
Concatenazione
Trasformazione
Estrazione (sotto stringa) substring

93
94
96
99
100
102
102
104
105
105
110

112
112
114
116
119
120
121
122
124
126
126
127
128
129
129
134
136
140
142
143

145

149
152
155
157
158
159

161
165
165
166
167
168
168

Confronto 169

Sostituzione del contenuto in una stringa 170
Trasformare una stringa in un Array 170
Metodi utili 171
Programmazione generica 173
Generics e tipi parametro 175
Classi con piu parametri generici 178
Parametri di tipo delimitati (bounded Types) 179
Metodi generici 181
Costruttore Generico 183
Interfacce generiche 184
L'INTERFACCIA COMPARABLE 185
L'INTERFACCIA COMPARATOR 188
Collection 192
Collection<T> 194
COSTRUTTORI 196
METODI 198
Interfaccia List 202
La classe ArrayList<E> 206
Costruttori 207
Metodi 207

La classe LinkedList<E> 209
Costruttori 210
Metodi 210
ARRAYLIST E LINKEDLIST A CONFRONTO 214
L'interfaccia Iterator<T> 214
Metodi 215
l'interfaccia Listlterator<E> 217
Metodi 217

Le Code 221
L'interfacce Queue<E> 222
Metodi 223

La Classe PriorityQueue<E> 226
Costruttori: 227
L'interfaccia Deque <E> 231

La classe ArrayDeque<E> 233
Costruttori 233
Interface Set<E> 235
Metodi 236

| bucket array 237
Funzioni hash 238

La classe HashSet<E> 239
Costruttori 239
L'interfaccia SortedSet<E> 241
La Classe TreeSet<E> 242
Costruttori 242

Le mappe
Interface Map<K,v>
La classe HashMap
Iterare le HashMap
Ordinamento HashMap

Interface SortedMap<K,V)
La Classe TreeMap<K,V>

Costruttori
Metodi

Input-output da File
Introduzione alla gestione dei file
La Classe File:
File di testo e file binari
File di testo
Scrittura di un File di Testo
java.io.FileWriter
Costruttori
Metodi
Lettura di un file di testo
La classe FileReader
Costruttori
Metodi di lettura
Nuovo I/O — Lettura di testo
File binario
FileOutputStream
Costruttori
Metodi
ObjectOutputStream
Costruttore
Input File Binario
FilelnputStream
Costruttori
Metodi
Stream e file ad accesso diretto
Costruttori
Metodi
Metodi in lettura
Metodi di scrittura

La gestione delle date
Classe Date

| costruttori di un oggetto Date:

Metodi

La classe DateFormat

La classe SimpleDateFormat
Costruttori

Fuso orario

246
248
250
254
259
260
261
261
262

267
269
270
274
275
276
276
276
277
281
282
282
282
286
287
288
288
288
290
290
292
293
293
293
297
297
2098
298
208

301
302
303
303
304
307
307
308

Calendar e GregorianCalendar
Metodi di calendar
Costruttori di GregorianCalendar
Metodi

310
311
311
312

Introduzione a Java

Un programma & rappresentato da uno o pit file con
iestensione java

|| compilatore si occupa di tradurre il programma in un

Compiilatore (avac) linguaggio intermedio eseguibile dalla JVM

Il programma adesso é rappresentato dauno o piu fileco
estensione class

| software pud essere eseguito su qualsiasi dispositivo
dotato di JVM

Java € un linguaggio di programmazione con le seguenti caratteristiche:

1. Object Oriented (orientato agli oggetti
2. Portabile, ovvero lindipendenza dal sistema operativo. Gli elementi che
rendono il linguaggio Java portabile sono:
1. Java Virtual Machine (La macchina virtuale o JVM)
2. Java Platform

La macchina virtuale

Java Virtual Machine o JVM é un software che si occupa di eseguire i programmi
tradotti in bytecode dal compilatore. La JVM & una CPU virtuale: traduce i bytecodes
nelle istruzioni macchina della CPU del dispositivo reale sul quale si vuole eseguire |l
programma

Esempio di traduzione di un
software Java in bylecode

Vantaggi e svantaggi di Java
Vantaggi:

e indipendenza del linguaggio bytecode: consente di eseguire lo stesso
programma su piu dispositivi dotati di JVM

e velocita di sviluppo

e grande disponibilita di librerie

e alta integrazione con il web

Svantaggi:

e \Velocita di esecuzione: il programma viene eseguito ed elaborato dalla JVM
che a sua volta traduce le istruzioni in linguaggio macchina. Pertanto il tempo
di esecuzione & leggermente piu lento rispetto ad un programma scritto in
C++.

e Attraverso la de compilazione € possibile risalire al codice sorgente (a meno di
usare opportuni strumenti che si chiamano java obfuscator)

| paradigmi della programmazione

Un paradigma € l'approccio che si segue per risolvere un problema (insieme d'idee) |
paradigmi piu comuni:

—Imperativo (importante & l'algoritmo e la programmazione strutturata) ==> dati e
funzioni sono separati

—A oggetti (importante & l'oggetto, descritto dai dati e dalle funzioni, dette metodi,
che operano sui dati) ==> dati e funzioni non sono piu separati

Paradigma imperativo
Paradigma ad oggetti

Problema complesso
l Problema complesso

Scomposizione in funzioni l
(Approccio top-down) Scomposizione in oggetti interagenti

Vantaggi della OOP:

—Riutilizzo massiccio del codice: si usa un oggetto gia creato (e testato) da altri
programmatori. Un oggetto pu0 essere usato anche per crearne un altro grazie
all'ereditarieta.

Cosa bisogna sapere di un oggetto?

—Come si usa, non come é fatto!

—Esempio: per assemblare un PC, si usano oggetti (schede madri, CPU, schede
video etc) gia creati da altri.

E' necessario sapere la CPU come ¢ fatta?

Parole riservate del JDK: Keywords

abstract ~ default if | private this
boolean | do | implements | protected | throw

| break double import public i_t_hrows_
byte else instanceof return | transient
case | extends int | short ' try
catch ' final | interface | static | void
char | finally long | strictfp | volatile
class float native | super | while

" const ' for | new | switch |
continue | goto | package | synchronized |

Struttura di un programma

| programmi in Java sono costituiti da classi. Potrebbero esserci decine di migliaia di
classi. Un programma minimo & costituito da almeno una classe. Per ogni classe,
viene creato un file separato. Il nome del file corrisponde al nome della classe.

Gli elementi che compongono una classe sono:

1. Metodi
2. Attributi

| metodi e gli attributi in un programma Java devono essere contenuti in una classe:

Classe
Attributi

Il codice di una classe & costituito dal nome della classe e dal corpo della classe
racchiuso tra parentesi graffe.

public class Main{

CLASS BODY

Gli attributi descrivono le proprieta della classe mentre i metodi sono le azioni che si
pOSsSoNo compiere.

Classe eseguibile (metodo main)

Per poter essere eseguito un programma Java si deve rendere eseguibile una sua
classe. Per far questo bisogna definire nella classe che si vuole rendere eseguibile
un metodo chiamato main();

1eow

Classe

‘Classe eseqguibile;

main(String[] args)

1. La parola chiave public indica che il metodo puo essere invocato da qualsiasi
luogo

2. La parola chiave static indica che il metodo pud essere invocato senza creare

un’istanza della classe

La parola chiave void indica che il metodo non restituisce alcun valore

4. La variabile dell’array args contiene argomenti inseriti nella riga di comando
se non ci sono argomenti, l'array & vuoto

w

Questi concetti saranno visti nei prossimi argomenti. Per ora bisogna sapere come
scrivere ed eseguire un semplice programma Java con il metodo principale.

10

class Main {
public static void main(String[] args) {
System.out.println("Hello world!");

L'output su schermo si ottiene tramite il comando :

System.out.printin()

Tra parentesi si scrive 'argomento da stampare.

e System.out.printin(1); Visualizza il numero 1 sullo schermo
e System.out.printin("Java"); Visualizza "Java" sullo schermo
e System.out.printin("Java e C++"); Visualizza "Java e C++" sullo schermo

Questo metodo ha due versioni:

1. System.out.printin() stampa e manda a capo il cursore, se si usa piu volte ogni
volta 'argomento passato viene visualizzato su una riga separata.
2. System.out.print(), il testo viene visualizzato sulla stessa riga.

La classe che avvia il programma pud avere qualsiasi nome, ma il metodo principale
deve sempre avere lo stesso aspetto:

public class Home

{

public static void main(String[] args)

{

11

Se il metodo principale ha una dichiarazione non valida, sono possibili due casi:

1. Il programma non puo essere compilato
2. Il programma e stato compilato correttamente ma non puo essere avviato

Il programma non puod essere compilato

E il caso in cui la dichiarazione del metodo principale viola la sintassi di Java.
Esempio:

public static main(String[] args)

nessun valore restituito

Il programma puo essere compilato ma non puo essere eseguito:

E il caso in cui il metodo, € scritto in modo corretto come metodo normale, ma non
soddisfa il requisito del metodo principale

Esempio:

public static void main(String args)
dovrebbe essere String [] args

public void main(String[] args)
manca la parola static

Quindi, il metodo principale € il punto d'ingresso di qualsiasi programma Java. Ha
una sintassi molto specifica che bisogna ricordare.

Per realizzare un programma e renderlo eseguibile si devono compiere i seguenti
passi:

1. Scrivere il codice sorgente;

2. compilare il codice sorgente;

12

3. eseguire il codice compilato.

Per editare il codice Java si pud usare qualsiasi editor di testi e salvarlo in un file con
estensione .java. Il nome da dare al file corrisponde al nome della classe. Se il
programma & composto da piu classi, si deve memorizzare ogni classe in un file
diverso.

Per compilare il programma occorre usare il Prompt dei comandi. || compilatore Java
viene richiamato usando il seguente comando:

javac nomefile

La compilazione genera un file compilato che ha estensione .class e rappresenta il
bytecode.

Per eseguire il programma bisogna attivare l'interprete Java. L'interprete prende il
codice compilato (bytecode), lo traduce in codice macchina e lo esegue.
L'interprete Java viene richiamato usando il comando:

java nomefile

Il nome del file passato all’interprete corrisponde alla classe che contiene il metodo
main.

Esistono molti IDE che permettono di eseguire tutte le precedenti operazioni esempi
eclipse, netbeans ecc...

Definizione di una classe

Un programma Java € costituito da classi: ogni classe &€ memorizzata in un singolo
file, il cui nome coincide con il nome della classe. L'estensione del file € java.

Un programma consiste in una serie di file con l'estensione ‘java', e ogni file
contiene il codice per una sola classe

13

Se un file si chiama Moto.java, contiene la classe Moto.

Quando si hanno molti file si raggruppano in cartelle e sottocartelle, inoltre le classi
sono raggruppate in pacchetti e sotto-pacchetti.

Esempioclassi
src
com
sistemiereti
"2« Moto.java

Qe sempioclassi
; Source Packages
L] com.sistemiereti
& Moto.java

package com.sistemiereti;

public class Moto {

O 00 - o L

| package

| package rappresentano un meccanismo per organizzare classi Java in sottogruppi
ordinati. Si tratta di uno strumento utile per organizzare le classi in modo logico e
ordinato sotto un unico nome. Le classi principali della libreria di base di Java sono
raccolti nel package java.lang. | package consentono anche di creare classi
pubbliche con nomi uguali. E sufficiente collocarle in package diversi. Il nome di un
package deve essere univoco. Per usare una classe di un package si usa la parola
chiave package seguita dal percorso della classe. La strutturazione dei tipi in
package consente di raggiungere i seguenti scopi.

e Evitare conflitti di nome tra tipi, poiché il nome della classe & parte del nome
del package.

e Riusare tipi gia scritti da altri programmatori importando i relativi package.

e Raggruppare i tipi secondo criteri funzionali e di correlazione.

| nomi dei pacchetti e dei sotto pacchetti vanno indicati nel codice della classe, e
devono avere lo stesso nome delle cartelle.

Quindi, da un lato, ci sono i file archiviati nelle cartelle e dall'altro le classi
memorizzate nei pacchetti. Un nome di classe deve anche coincidere con il nome
del file. Il nome del pacchetto coincide con il nome della cartella in cui € archiviata la
classe.

14

Variabili e Data Type

Per introdurre i primi concetti risolviamo un problema di matematica da prima
elementare e vediamo i passi da fare per risolverlo.

Roberta ha 20 biscotti e ne mangia 11. Quanti biscotti imangono a Roberta?
Scomponiamo il problema nei passi elementari:

20 biscotti

11 mangiati

Quanti biscotti imangono?

1. biscotti =20
Dati di input
2. mangiati=11

3. rimanenti =biscotti - mangiati Logica

4. Risultato e rimanenti #

Le prime due righe rappresentano i dati d'input, la terza riga la logica di risoluzione e
la quarta riga l'output.

Convertiamo questo pseudo codice in java:

Bisogna inserire il codice dentro il metodo main in una classe:

15

biscotti;
biscotti =20;
mangiati=11;

biscottiRimasti=biscotti-mangiati;
System. .println("biscotti rimasti "+biscottiRimasti);

}

In queste sempilici righe di codice abbiamo introdotto alcuni concetti fondamentali:

Variabili

Tramite la keyword int, si dichiara che biscotti & una variabile (di tipo intero),
ossia un contenitore che permette di salvare, aggiornare e recuperare i dati.

Una variabile in Java ha tre proprieta importanti:

tipo, nome e valore.

Il nome, ci permette di distinguere una variabile da un'altra. E come un'etichetta su
una scatola.

Rappresenta un nome che si assegna a uno spazio di memoria alterabile. |l nome
della variabile, rappresenta I'indirizzo fisico in memoria. Serve per identificare la
locazione della variabile in memoria al fine di accedere o modificarne il valore
durante 'esecuzione.

16

Memoria

Nome “ciao mondo”
variabile

Una variabile pud memorizzare solo dati il cui tipo € uguale al suo.

Il valore assegnato alla variabile pud essere modificato durante I'esecuzione del
programma, ma il nome e il tipo rimangono inalterati.

Nell'utilizzo delle variabili distinguiamo due fasi:

1. Dichiarazione: si effettua utilizzando la parola chiave che identifica il tipo
seguita da un identificatore.

17

tipo biscotti;

Questa istruzione crea una nuova variabile (contenitore) che si chiama biscotti, tale
variabile ancora non & definita ossia non contiene nessun valore.

int biscotti;

7 =
{ZYPC name

2. Assegnazione: si effettua utilizzando [I'operatore di assegnamento,

rappresentato dal simbolo uguale (=) Seguito dal valore da attribuire,

ricordando che tale valore deve essere dello stesso tipo della variabile in
questione.

biscotti=20;

Viene valorizzata la variabile con il valore 20, (inseriamo un contenuto nella scatola).

Dichiarazione Assegnazione

let biscotti biscotti=20

Le due fasi si possono raggruppare in un unica istruzione:

18

int mangiati=11;

Ogni dichiarazionel/inizializzazione pud essere effettuata su piu variabili in una sola
riga utilizzando il simbolo di virgola (,).

Codice

Il nome delle variabili delle costanti, dei metodi e degli oggetti viene detto
identificatore e deve rispettare alcune regole:

non deve coincidere con una delle parole chiave del linguaggio;
non puo iniziare con un nuMero;
non puo contenere caratteri speciali come ad esempio:

e |o spazio,

e il trattino (-),

e il punto interrogativo (?),
e il punto (.),

e Sono perd ammessi:
e |'underscore ()
e il simbolo del dollaro ($).

Java é case sensitive, quindi i nomi miaVariabile e MiaVariabile indicano due variabili
diverse. Per convenzione il nome di una variabile viene scritto in minuscolo e se é
composta da piu parole si utilizza la rappresentazione a gobba di cammello ossia si
scrivono in maiuscolo le iniziali delle parole che seguono la prima:

int biscottiRimasti

'/ dichiarazione e inizializzazione di variabili primitive
inta=44,b=>55;

'/ dichiarazione e inizializzazione di variabili riferimento
String my_str = new String("ciao monda");

'/ dichiarazione

int number_1; // CORRETTO

int number 1;// ERRORE - ;' expected

int 1number; // ERRORE - not a statement
'/ ae Asono variabili DIVERSE!!!

int a; ﬂc‘rat ‘;'df ’
int A '/ inizializzazione
: c=33.33f;

d = 44.44f,

19

http://jdoodle.com/ia/kJI

Java e un linguaggio fortemente tipizzato, di ogni variabile si deve specificare il Data
Type di appartenenza il quale classifica in modo preciso:

. un insieme di valori
. le operazioni definite su tali valori.

Per esempio, il data type int, definisce un insieme di valori Interi, piu un insieme di
operazioni ammesse su tali valori (addizione, sottrazione, e cosi via).

In Java esistono due tipi di dato:

1. Primitivi
2. Riferimento

Riferimento

| tipi primitivi in Java sono 8 e ciascuno di essi & pensato
per rappresentare un certo tipo di informazione e
utilizzando una quantia specifica di memoria.

(array, classi) utilizzano una guantitd di memoria variabile in
funzione del numero di informazioni contenute . Ogni variabile di
questo tipo viene inizializzata per default con il valore speciale
null,

Tipi di dati primitivi

Java definisce otto tipi di dati primitivi:
= Interi: byte, short, int, long. (differiscono solo per il numero di byte occupati)
= floating point (o a virgola mobile): float e double

=testuale: char.

=logico-booleano: boolean.

20

numeric Snnnnnommmree 1 on - numeric

Tipi di dati interi (Literal)

Literal € la forma letterale con cui si pud rappresentare un tipo primitivo all’interno
del codice sorgente, e in questa forma il compilatore € in grado di determinare il data
Type di riferimento.

Un numero intero pud essere rappresentato come un insieme di valori espressi in
base Decimale.

Base Decimale

Oltre alla notazione decimale si possono usare anche le notazioni:
Binaria: la notazione che utilizzano i processori dei computer, composta soloda 0 e

1. Bisogna anteporre al numero intero, uno 0O (zero) e una b (maiuscola o
minuscola).

21

Ob1010101010

Base 2

Ottale: si utilizzano solo i numeri da 0 a 7. Bisogna anteporre al numero intero uno 0
(zero).

Esadecimale: si utilizzano oltre ai numeri da 0 a 9 anche le lettere da A ad F.
Bisogna anteporre al numero intero 0 (zero) e una x (indifferentemente maiuscola o
minuscola).

Base 16

Esempi:
byte b = 10; //notazione decimale: b vale 10
short s = 022; //notazione ottale: s vale 18

long | = 0x12acd; //notazione esadecimale: | vale 76493

22

inti = 1000000000; //notazione decimale: i vale 1000000000

int n = 0b10100001010001011010000101000101 //notazione binaria: //n vale
-1589272251

Tipi di dati a virgola mobile Literal

| numeri floating point (a virgola mobile)sono quei numeri composti da due parti:
1. un parte intera
2. una parte decimale

La forma literal prevede che queste due parti siano separate da un punto.

312.34

Separatore

Questa € la forma piu comune di rappresentare i numeri reali, esiste anche la
possibilita di rappresentare un floating point con Ila notazione detta
scientifica(esponenziale).

Suffisso

In tale rappresentazione si:
Prende una sola cifra per la parte intera
Si aggiunge il suffisso e (esponenziale)

il numero che segue il suffisso si chiama esponente e rappresenta una potenza di
dieci che moltiplicata per il numero ritorna il numero di partenza

23

Java utilizza per i valori floating point (a virgola mobile) lo standard di decodifica
IEEE-754. | due tipi che possiamo utilizzare sono:

float 182 DIt (d8 +/~1.400589846 %0 -8 4008354 T &)

double 64 bit (da +/-4.94065645841246544-2¢ a +/-1.79769313486231570+3%8)

Per default un literal in virgola mobile viene considerato da java come un double.
Per assegnare un valore a virgola mobile a un float, non possiamo fare a meno di un
cast. Per esempio, la seguente riga di codice provocherebbe un errore in

compilazione:

float f = 3.14;

il cast con la sintassi breve:

float f = 3.14F;

La “effe” pud essere sia maiuscola sia minuscola.

Esiste, per quanto ridondante, anche la forma contratta per i double:
double d = 10.12E24; € equivalente a double d = 10.12E24D;

Alcune operazioni matematiche potrebbero dare risultati che non sono compresi
nell'insieme dei numeri reali (per esempio “infinito”). Nella libreria standard sono
definite delle classi dette classi wrapper (in italiano classi involucro), che non sono
altro che classi che rappresentano i tipi di dati primitivi. Gli oggetti istanziati da
queste classi sono interscambiabili con i dati primitivi grazie alla caratteristica di Java
nota come autoboxing-autounboxing. E per questo che le classi wrapper Double e
Float forniscono le seguenti costanti statiche:

e Float.NaN Float. NEGATIVE_INFINITY Float.POSITIVE_INFINITY
e Double.NaN Double.NEGATIVE_INFINITY Double.POSITIVE_INFINITY

Dove NaN sta per “Not a Number” (“non un numero”).

24

| Compila Annulla Taglia, Copia| Incolla| Trova... Chiudi

| public class Tipi

{
public static void mum(Strmg[] args){
double d = 2.7/0.9;
float f = 0.0f/0. @f

| System.out.println{"risultato = "+d);
' System.out.println("risultato = "+f);
| }
I 1
&) @ BiueJ: BlueJ: Terminale - tipi
‘ risultato = Infinity
risultato = NaN

! | Classe compilata - nessun errore sintattico

Tipo di dato primitivo letterale(char)

Il tipo char permette di immagazzinare caratteri (uno per volta). Per caratteri si
intendono:

Lettere dell'alfabeto
Numeri

Segni di punteggiatura
Caratteri di controllo

Java utilizza linsieme 16 bit per memorizzare un carattere e usa lo standard
Unicode per la decodifica dei caratteri. Per rappresentare un carattere si utilizzano
gli apici singoli

‘At ‘3ece...

25

Si possono specificare delle sequenze particolari che iniziano con il simbolo di

\

escape

Sequenza di escape Descrizione
\t Inserisce una Tabulazione
\b Inserisce un backspace n
\n Inserisce una nuova riga
\r Inserisce un ritorno a capo
A Inserisce un singolo carattere di citazione
\ Inserisce un carattere con doppia virgoletta
A\ Inserisce un carattere barra rovesciata
\ddd Octal character (ddd)
\uxxxx Hexadecimal Unicode character (xxxx)

Literal Boolean

Il data Type boolean & un data type che ammette solo due valori logici, true e false
che non vengono convertiti in una rappresentazione numerica. Il true in Java non e
uguale a 1, ne il valore false & uguale a 0. In Java, i valori literal boolean possono
essere assegnati solo a variabili dichiarate come booleane o utilizzate in espressioni
con operatori booleani.

26

Literal String

| valori literal delle stringhe in Java sono specificati racchiudendo una sequenza di
caratteri tra una coppia di virgolette. Esempi

"Ciao mondo"

"due \ n"

Le sequenze di escape funzionano allo stesso modo all'interno di stringhe. Le
stringhe in Java devono iniziare e finire sulla stessa riga.

Tipi di dati interi, casting e promotion

Type Size Byte Range Default
byte 1 -128, +127 0
short 2 -32768, +32767 0
int 4 -2147483648, +2147483647 0
Tong 8 -9.223E18, +9.223E18 0
float 4 +3.4 E+38 0
double 8 +1.7 E+308 0
char 2 0, 65535 0
boolean 1 true, false false

27

6 package tipi;

7 public class Tipi {

8 [[incompatible types: possible lossy conversion from int to byte | {

9 s
10 (Alt-Enter shows hints)

% byte b = 128;: i] - |2
12
13

Q short s = 32768;: ¥) 0 D (7
15 incompatible types: possible lossy conversion from int to short
16 (Alt-Enter shows hints)

n int i = 2147483648: //i\ massimo per int & 2147483647
18 integer number too large: 2147483648 |
19| L }

20 (Alt-Enter shows hints)
21 ¥
22

provocano errori in compilazione.

Quando si assegna una variabile a un altra variabile java effettuera una conversione
automatica (implicita) con ampliamento dei valori. Tale conversione €& attuata,
tuttavia, solo se si verificano due condizioni:

1. I tipi sono compatibili tra loro

2. il tipo finale €& piu grande del tipo iniziale.

Essa & sempre lecita fra tipi interi (int, byte, short e long), decimali (double float) e
char, ma non con i tipi boolean.

int a=100;
double d;

d=a;//100.0

o Iy I

28

Casting Esplicito

Se i tipi sono incompatibili, si pud provare comunque ad assegnare il valore
effettuando un'operazione di conversione esplicita con riduzione del valore tramite
un operatore definito di cast che ha la sintassi che segue:

(target-type)exp

Dove target-type € il tipo di dato in cui si vuole convertire I'espressione. Nell'attuare
la conversione possono verificarsi i seguenti casi:

e Se si forza I'assegnamento di una variabile contenente un valore decimale a
una variabile di tipo intero, si avra un troncamento della sua parte frazionaria;

e Se si assegna un valore di una variabile che é piu grande del valore massimo
contenibile nell'altra variabile, sara assegnato un valore (detto modulo) che
rappresenta il resto della divisione tra i due valori.

int a;
doubled=123,45;
a= (int)d; //123

Conversione di Tipo all'interno delle espressioni casting e promotion

Un espressione pud contenere variabili costanti operatori e valori numerici (literal),
se sono presenti tipi di dati differenti java esegue una promozione applicando delle
regole.

float === double

char byte e short vengono promossi ad |nl’ T \ T

byte et ShOrt e iNt == |ONg

I
char

-3 ... May loose precision during conversion

29

e Se uno degli operandi € long, I'altro operando sara convertito in long; altrimenti

e se uno degli operandi € un float, l'altro operando sara convertito in float;
altrimenti

e se uno degli operandi degli operandi € un double, l'altro operando sara
convertito in double;

La promozione automatica degli operandi avviene prima che sia eseguita una
qualsiasi operazione binaria.

short a=100,b=130;

int c=a+b;//230

Promozione avvenuta con successo. Se invece consideriamo:
short a=100,b=130;

short c=a+b; //errore

Questo perché java nell'espressione promuove i due short in un intero che quindi
non puod essere assegnato a uno short, quello che si deve fare € eseguire un casting

short a=100,b=130;

short c=(short)(a+b); //230
Alto esempio:

byte b=50;//nessun problema

b=b+1;//errore perché in un espressione il byte viene promosso a int

sintassi corretta

byte b=50;//nessun problema
30

b=(byte)(b+1); corretto conferiamo l'intero in byte

In questo modo il compilatore sara avvertito di un'eventuale perdita di precisione.
Bisogna essere perd molto prudenti nell'utilizzare il casting in modo corretto. Infatti
se scrivessimo:

b = (byte) 128;

il compilatore non segnalerebbe nessun tipo d'errore. Siccome il cast agisce
troncando i bit in eccedenza (nel nostro caso, dato che un int utilizza 32 bit, mentre
un byte solo 8, saranno troncati i primi 24 bit dell'int), la variabile b avra il valore di
-128 e non di 128.

public class Tip1l

{
public static void main(String[] args){
byte b=50,
b=(byte)(b+1);
byte c=(byte)lZ8;
System.out.println('b = "+b+" , c = "+C);
I

}

O D BluelJ: BlueJ: Terminale - tipi

b=51, c=-128

Classe compilata - nessun errore sintattico

Un altro tipico problema di cui preoccuparsi € la somma di due interi. Se la somma di
due interi supera il range consentito, € comunque possibile immagazzinare |l
risultato in un intero senza avere errori in compilazione ma il risultato sara diverso da
quello previsto.

31

public class Tipi
{
public static void main(String[] args){
int a = 2147483647,
intb=1:;
int risultato = a+b;
System.out.println("risultato = "+risultato);

}

© D BlueJ: BlueJ: Terminale - tipi
risultato = -2147483648

Classe compilata - nessun errore sintattico

Anche la divisione tra due interi rappresenta un punto critico! Infatti il risultato finale,
per quanto detto sinora, non potra che essere immagazzinato in un intero, ignorando
cosi eventuali cifre decimali. Inoltre, se utilizziamo una variabile long, a meno di cast
espliciti, essa sara sempre inizializzata con un intero. Quindi, se scriviamo:

long a = 2000;

Dobbiamo tener ben presente che 2000 € un int per default, ma il compilatore non ci
segnalera errori perché un int pud essere immagazzinato in un long. Per la
precisione dovremmo scrivere:

long a = 2000L;

che esegue con una sintassi piu compatta il casting da int a long.

32

Da:

: byte short char int long | float | double
byte Impl. (char) Impl. Impl. Impl. Impl.
short (byte) -—- (char) | Impl. Impl. Impl. Impi.
char (byte) (short) Impl. Impl. Impl. Impl.
int (byte) (short) (char) -—- Impl. Impl. Impl.
long (byte) (short) | (char) (int) Impl. Impl.
float (byte) | (short) | (char) (int) (long) Impl.
double (byte) (short) | (char) (int) (long) | (float)

Codice
Costanti

Una costante rappresenta uno spazio di memoria in cui € memorizzato un valore che
non pud essere piu alterato dopo che vi é stato assegnato. In Java una costante si
dichiara utilizzando la keyword final.

final data_type identificatore = valore;

Modificatore

final int A = 82;

A =90; // ERROR - cannot assign a value to final variable a

La dichiarazione di una costante impone delle regole relative a quando e se essa
debba essere inizializzata, e tali regole presentano delle differenze a seconda che la

costante sia locale a un metodo o globale di classe. Vedremo tali differenze quando
studieremo i metodi e le classi.

33

https://www.jdoodle.com/a/LRf

Operatori aritmetici

Nel codice € presente 'operatore aritmetico

per il calcolo dei biscotti rimasti. Altri operatori aritmetici che agiscono su operandi
numerici sono:

Operatore Descrizione
+ Addizione

Moltiplicazione

% Modulo

Nelle espressioni la precedenza degli operatori € la stessa dell’algebra:

Prima sono valutati gli operatori di segno delle singole variabili o costanti
numeriche.

Successivamente sono valutate le operazioni di moltiplicazione, divisione e modulo.
Per ultime le operazioni di addizione e sottrazione.

Questi criteri di precedenza possono essere modificati con il ricorso ai simboli delle
parentesi tonde.

L'unico operatore che pud risultare poco familiare & 'operatore modulo. |l risultato
dell’operazione modulo tra due numeri coincide con il resto della divisione fra essi.
Per esempio:

5%3=2

10%2=0

100 % 50 =0

34

Questi operatori si dicono binari in quanto si applicano a due operandi.

Esistono anche degli operatori (unari) di pre e post-incremento (e decremento)

Operatore Descrizione

- Decremento
++ Incremento

Operatore unario d’incremento "++"

Questo Operatore incrementa I'operando di uno, cioé I'espressione:
X ++
Sara equivalente all’espressione:
x=x+1
Tale operatore pud essere usato in due modi:

In posizione post, con operatore dopo operando (ad esempio, x++), restituisce il
valore prima d'incrementare:

int y= 5;
int x = y++;

System.out.println(x);
System.out.println(y);

Da come risultato x = 5, y = 6, poiché l'operazione d'incremento avviene DOPO che
alla variabile x viene assegnato il valore diy.

e Come prefisso quindi prima dell'operando (ad esempio, ++x), restituisce |l
valore dopo l'incremento.

restituisce il risultato x = 6, y = 6, poiché prima il valore della variabile y aumenta di
uno e poi tale valore viene assegnato alla variabile x

35

Operatore unario di decremento "--

Questo Operatore decrementa il valore della variabile di uno:

X--

€ equivalente a:

X=X-1

Anche per questo operatore valgono le stesse regole viste per |'operatore
incremento.

Per le operazioni di assegnazione oltre uguale (=) usato in precedenza, java mette a
disposizione gli operatori:

Operatore Descrizione

+= Somma e assegna x+=y equivale a x=x+y

—= Sottrae e assegna x-=y equivale a x=x-y

= Moltiplica e assegna x=y equivale a x=x*y
/= Divide e assegna x/=y equivale a x=x/y
%= Calcola il reste assegna x%=y equivale a x=x%y

Introduzione all'input

La classe Scanner

Nel programma precedente le variabili d'input sono state assegnate direttamente nel
codice. Per realizzare un programma piu efficiente si deve gestire l'input dell'utente.
Partiamo dal concetto fondamentale che € alla base del discorso: lo stream (flusso).
Per prelevare informazioni da una fonte esterna (la tastiera, un file, una rete etc.), un

36

programma deve aprire uno stream su essa e leggerne le informazioni in maniera
sequenziale. Allo stesso modo un programma pud inviare a una destinazione
esterna aprendo uno stream su essa e scrivendo le informazioni sequenzialmente.

reads
_ > Program

A stream

Source

A stream

writes
o)™

dest

La classe

java.util.Scanner

permette di leggere i dati da un'origine specificata:

0 una stringa

o un file

o la console (caso che trattiamo)

Successivamente, riconosce le informazioni e le elabora in modo appropriato.

La classe Scanner presenta diversi costruttori che permettono di ottenere un oggetto
di tipo Scanner a partire da

oggetti di altri tipi, quali ad esempio:

37

1. System.in (se si deve leggere da tastiera).
2. String, utile in quei casi in cui sia necessario procurarsi degli input da una stringa.
3. File utile in quei casi in cui l'input proviene da un file di testo.

Per approfondimenti si rimanda alla documentazione ufficiale del linguaggio Java
(link).

Per utilizzare la Classe Scanner per prima cosa importiamo la classe con l'istruzione:

import java.util.Scanner;

Posizionata in alto prima della definizione della classe:

import java.util.Scanner:
public class ProvaScanner{

public static void main(String[] args) {

Il costruttore che utilizziamo per la lettura da tastiera é:
Scanner in = new Scanner(System.in); //istanzia un oggetto lettore di tipo Scanner
Usando la libreria System.in abbiamo in ingresso un buffer con le informazioni sotto

forma di byte da convertire.

Scanner si occupa di convertire il buffer in ingresso nel tipo di variabile che vogliamo
(int, String, doubile....).

La classe Scanner suddivide lo stream dei caratteri in, spezzoni di stringhe(token)
separate dai caratteri delimitatori.

| caratteri delimitatori di default sono:
o gli spazi,

o i caratteri di tabulazione

o i caratteri di newline.

38

Alcuni metodi della classe Scanner:
int nextint(): legge un numero intero e lo restituisce al chiamante

double nextDouble(): legge un numero reale e lo restituisce al chiamante;

import java.util.Scanner;
public class Main {
public static void main(String[] args) {
int 1i;
double j;
Scanner scanner = new Scanner (System.in);
System.out.print("Primo numero:");
i = scanner.nextInt();

System.out.print ("Secondo numero: ");

j = scanner.nextDouble();

System.out.print ("La somma di"+i+"+"+j+"e: ");
System.out.println(i + j);

scanner.close();

Caodice

String next(), legge un blocco di testo (una sottostringa), ossia una sequenza di
caratteri contigui senza delimitatori, e lo restituisce al chiamante: questo metodo
considera come delimitatori di sottostringhe gli spazi, i caratteri di tabulazione e i

caratteri di newline;

String nextLine(): legge una linea di testo e la restituisce al chiamante;

39

https://trinket.io/java/bd95daad84

import java.util.Scanner;
'+ public class Main {
i» public static void main(String[] args) {
String s;
) String citta;
) Scanner scanner = new Scanner(System.in);
System.out.print("Inserisci Nome e Cognome ");
) s = scanner.next();
l System.out.print("inserisci citta ");
) citta = scanner.next();
! System.out.println("Sig: "+s);
f System.out.println("Nato a: "+citta);
i scanner.close();

] - . .
} Il codice si compora in modo corretto?
Buffer

Quando scorriamo la lista degli elementi presenti in Scanner con il metodo
next() per assegnarne il valore a delle variabili, il programma trova la prima
volta il buffer vuoto e per guello attende |'input daparte dell’'utente,

)) Scompone "Mario Rossi” in "Mario” e "Rossi” e assegna il valore "Mario” alla

Mario Rossi stringa s

i Quando si invoca per la seconda volta il metodo next() il programma gia trova
Rossi un elemento nel buffer (che & "Rossi”) quindi lo assegna direttamente alla
variabile citta senza aspettare l'input dall'utente, andando poi a stampare i
valori contenuti nelle due variabili.

Quindi nel buffer dell'oggetto Scanner il dato "Maric Rossi "non viene trattato come un unico testo ma viene scomposto
in due elementi "Mario” e "Rossi” in virtl dello spazio bianco, che viene considerato un separatore dal parser dello
Scanner.

Codice
Soluzione: usare il metodo

nextLine() in grado di leggere un'intera riga e posizionare il cursore nella
successiva.

linea

40

https://trinket.io/java/2ec017c7d3

Se si usa nextiLine() bisogna fare attenzione alla sequenza di letture che si
eseguono.

import java.util.Scanner;
public class Main {
public static void main(String[] args) {
int i;
String concorrente;
Scanner scanner = new Scanner(System.in);
System.out.print("Inserisci il numero del concorrente ");
= scanner.nextInt();

System.out.print("inserisci Cognome e nome ");
concorrente = scanner.nextLine();
System.out.print("\nNumero partecipante:\t

"+"Concorrente\n"+1i);
System.out.println("\t"+concorrente);
scanner.close();

Buffer
e la prima operazione scanner.nextint () leggeil numero intero manoniil
separatore
scanner.nextLine () leggeil separatore diriga e posizionera Scannerall'inizio
newline dellariga successiva.

Quindi le due istruzioni vengono eseguite entrambe.

Per risolvere il problema si deve svuotare il buffer questo lo si fa inserendo dopo
l'istruzione per la lettura di un numero un'istruzione nextLine() che va a eliminare |l
fine riga.

Caodice
* boolean hasNextInt(): restituisce vero se il prossimo blocco pud essere

interpretato come un numero intero, falso altrimenti.
41

https://trinket.io/java/c4f0dfb586

boolean hasNextDouble(): restituisce vero se il prossimo blocco pud essere
interpretato come un numero reale,falso altrimenti.

* boolean hasNextLine(): restituisce vero se in input & disponibile una ulteriore riga,
falso altrimenti.

boolean hasNext(): restituisce vero se in input & disponibile un ulteriore blocco,
falso altrimenti.

Questi metodi vengono utilizzati per controllare I'input.

Esercizi

1 Scrivere un programmaSommaApprossimata che chiede all’utente d'inserire due numeri con la
virgola, li somma e poi stampa il risultato come numero intero.

2 Scrivere il programmaAreaTriangolo assumendo le seguenti dichiarazioni di variabili:
int base , altezza; double area;

3 Scrivere l'algoritmo che, ricevuto in input un orario attraverso le sue tre componenti (ore, minuti e
secondi), ne calcoli il valore totale in secondi.

4 Scrivere un programma che dato un numero di secondi calcolare da quante ore minuti e secondi &
composto.

Questo problema é l'inverso del precedente
5 File di posti al Cinema

Scrivi un programma che dato:

a) Un numero totale di Persone

b) Il numero di posti presenti in ogni fila
Restituisca in output:

- I numero di file

- Nel caso l'ultima fila risulti incompleta indicare il numero di persone mancanti per completarla.

42

43

Strutture di controllo del flusso

Sequenza

Tutte le istruzioni che compongono il codice sorgente vengono eseguite a run-time in
ordine sequenziale, dall’alto in basso e da sinistra a destra.

Istruzuine 1

Istruzuine 2

Istruzuine 3

Le istruzioni di controllo del flusso, consentono di modificare il normale flusso di
esecuzione del programma.

Esercizi:

1 Scrivere un algoritmo che calcoli I'area di un trapezio, note le misure delle basi e
dell'altezza.

2 Scrivere l'algoritmo che, dati due numeri interi x ey, calcoli il risultato e il resto
della divisione intera tra x e y.

44

3 Scrivere un algoritmo che, date le eta di tre persone, calcoli 'eta media.

4 Scrivere un algoritmo che, dato il prezzo di un prodotto, calcoli il prezzo scontato
del 20%.

5 Scrivere un algoritmo che, lette le coordinate di due punti del piano, calcoli la
distanza tra essi.

Il flusso di esecuzione puo essere alterato attraverso tre categorie d'istruzioni:

istruzioni di salto condizionale: sono le istruzioni if-else, switch, case. La modifica
del flusso avviene a seconda che si verifichi o meno una determinata condizione

condizione

h 4 v

istruzionel istruzione2

istruzioni iterative: for, do, while. La modifica del flusso avviene ripetendo una
sequenza di istruzioni finché €& valida una determinata condizione. Supponendo di
avere un blocco di 10 istruzioni che vengono ripetute finché si verifica una
determinata condizione, il flusso eseguira le istruzioni del blocco dalla 1 alla 10,
dopodiché anziché eseguire l'istruzione 11, ritornera ad eseguire listruzione 1 del
blocco; questo finché la condizione sara valida.

45

falsor

istruzioni

v

istruzioni di salto incondizionato: break, continue, return. Queste istruzioni
determinano il salto del codice “forzato” ad una istruzione differente dalla successiva
nell’ordine sequenziale

Inoltre esistono le istruzioni di gestione delle eccezioni: try-catch-finally. Queste
istruzioni verranno approfondite piu avanti nel corso. Per ora possiamo iniziare a dire
che hanno un comportamento simile alle istruzioni condizionali. Qui perd la
condizione che determina il salto nel flusso di codice € determinata dal verificarsi di
un errore. Ovvero, se si verifica un errore (in Java eccezione o Exception) il codice
“salta” I'ordine sequenziale. Il significato di try-catch (prova e cattura) lo potremmo
riassumere cosi: “prova (try) ad eseguire questo blocco di istruzioni, se si verificasse
un’eccezione (errore), cattura (catch) il flusso ed esegui questaltro blocco di
istruzioni”

Struttura di selezione singola if

La prima e piu semplice struttura di controllo & quella definita di selezione singola if,
con cui si valuta se un’espressione € vera o falsa.

if (espressione) { istruzioni; }
dove:

e All'interno delle parentesi tonde () € presente un’espressione da valutare.

46

e Tra le parentesi graffe { } vanno poste le istruzioni che vanno eseguite se
I'espressione risultera vera.

e Se l'espressione risultera falsa, le istruzioni non saranno eseguite e il flusso

esecutivo del programma proseguira alla prima istruzione posta subito dopo la
parentesi graffa di chiusura.

Es:
Prima di uscire di casa si valutano le condizioni del tempo:

Se piove si prende I'ombrello

.
FE 7 v
— Piove?
% ,’f ¥
S . SE si verifica la
Prendi fombrello| |~ondizione esegui questa
» \Ix <
Esci di casa
—_ —

Si esce di casa

boolean pinve:true; | Ttpul —}avflAppll(-ltngB frun) I
A [} :
if(piove){ : : Prendi 1'ombrello
System.out.printin("Prendi I'ombrello"); \ Esci di casa
BUILD SUCCESSFUL (total time: @ seconds
System.out.printin("Esci di casa"); ad

Codice
Esempio di Selezione

Un'automobile percorre 20 km con un litro di benzina. Calcolare la spesa necessaria
a percorrere n km. Se la spesa € maggiore di €100, applicare uno sconto del 5%.

Dati:

47

https://www.jdoodle.com/a/LRz

Siccome al prezzo viene applicato uno sconto se la spesa € superiore ai 100 euro
spesa>100 verifichiamo la condizione

spesa>100 se la risposta é vera calcoliamo il prezzo scontato

spesa=spesa - spesa*5/100

consumo=20 km/I

|
prezzo=1.8 euro * spesa

numeroKms= input

consumo =20 —> costante
prezzo=1.8 —> costante

numeroKm = n —> dato d'input

litriConsumati= numeroKm/consumo —> logica

spesa= litriConsumati*prezzo

public static void main(String[] args) {
final int consumo =20;
final double prezzo=1.8;
Scanner tastiera=new Scanner(System.in);
System.out.println("Inserisci il numero di Km");
int numeroKm = tastiera.nextInt();

double litriConsumati= (double)numeroKm/consumo;
double spesa= litriConsumati*prezzo;
if (spesa>100)
spesa-=spesa*5/100;
System.out.println("La spesa da sostenere &: "+spesa);

}

Codice

Nella condizione si é fatto uso dell'operatore relazionale:

>

che permette di confrontare due espressioni e restituisce true se il primo operando é
maggiore del secondo, oppure false se non lo é.

Oltre a questo java dispone di altri operatori per confrontare espressioni essi sono:

Operatore Simbolo |Applicabilita
Uguale a = Tutti i tipi

Diverso da 1= Tutti i tipi
Maggiore > Solo i tipi numerici
Minore < Solo i tipi numerici
Maggiore o uguale > Solo i tipi numerici
Minore o uguale <= Solo i tipi numerici

Il risultato delle operazioni basate su operatori relazionali € sempre un valore
boolean, ovvero true o false.

49

https://replit.com/@RolandoSucco/Benzina#Main.java

Struttura di selezione doppia if/else

condizione

- v

istruzionel istruzione2

La struttura di selezione doppia if-else consente di eseguire delle istruzioni se

'espressione & valutata vera oppure altre istruzioni se I'espressione € valutata falsa.
Tali istruzioni sono mutuamente esclusive.

if (espressione) { istruzionei; }

else { istruzione2; }

Oltre al consueto costrutto if(se), &€ presente anche un blocco, definito costrutto

else(altrimenti), che eseguira le istruzioni poste al suo interno solamente se
I'espressione sara falsa.

public class Condizione_If_else {

3 public static void main(Stringl] args) {
int eta = 15;
if (eta = 18) {

System.out.println("F one vietata: hz eno di 1f)3
} else {

System.out.println("Access onsentito: . di 1 il B
}

Codice

50

https://www.jdoodle.com/a/tXk

La struttura if/else pud essere costruita con piu livelli di annidamento.

Vero) Falso
condizione

Y
Vero . Falso
’ _— condizione
istruzioni
Y
istruzioni
Y Y
istruzioni altre istruzioni
Y \4
y y

La logica é :

se € vera una delle condizioni, allora vengono eseguite le istruzioni corrispondenti e
il programma salta al di fuori di tutti gli altri if/else;

se nessuna condizione & vera, allora il programma le salta tutte.

Algoritmo che permette di verificare se un numero inserito & positivo, negativo o
nullo.

Main)
* Output “Inserire il numero”

!

Input N

=3 _

Cutput "Il numero inserito & *

|

False - True

. N=0 _-—l

—

False True W ith et
< N=0 > Output .p.usmw

Cutput "negativo” Output “nulle”

|

Codice

51

https://www.jdoodle.com/a/tXt

Lati di un triangolo
Stabilire se tre segmenti possono costituire i lati di un triangolo

Dati

Triangolo?

In un triangolo, ciascun lato deve essere minore della somma degli altri due.

A<B+CeB<A+CeC<A+B

Algoritmo

52

Inizio

risultato="non & un
triangolo"

risultato="non & un
triangolo"

risultato="é un triangolo"

risultato="non & un
triangolo”

)

scrivi risultato

oppure in modo piu semplice

(fl;lz;cv\
N

PP

// Leggi a /

/" Leggic /

Si No

a<b+c and b<a+c and c<a+b
e

- -
v \\ P
~_—

risultato="¢ un triangolo" ‘

risultato="non & un
triangolo"”

L F i
scrivi risultato /
g

1

_— —

C Fine D

usando gli:

Operatori booleani

Per verificare tre condizioni contemporaneamente abbiamo usato 'operatore logico
AND che opera su due operandi di tipo boolean e restituisce true se i due operandi
sono veri. Gli altri operatori logici disponibili sono:

Operatore Descrizione

"and logico" Restituisce true se sono vere le espressioni a

Sk destra e sinistra dell’'uguale.

54

"or logico" Restituisce true se una una delle due espressione
€ vera

"not" nega: I'espressione
! — se e false La cambia in true
— se € true la cambia in false

Quando si esegue un'operazione AND, se il primo operando & falso, il risultato e
falso indipendentemente dal valore del secondo operando.

In un'operazione OR, se il primo operando € true, il risultato dell'operazione & true
indipendentemente dal valore del secondo operando. Pertanto, in questi due casi
non € necessario valutare il secondo operando. Non valutando il secondo operando,
il tempo di esecuzione & minore e il codice risulta piu efficiente. Oltre a questi
operatori detti di cortocircuito javascript possiede degli operatori analoghi che
operano sempre su ogni bit.

Operatori bitwise ("bit a bit")

Gli operatori sui bit od operatori bitwise trattano i valori numerici come sequenze di
bit applicando le relative operazioni. Gli operatori previsti in Java Sono:

Operatore Descrizione

& And per la congiunzione logica bit a bit

| OR per la disgiunzione logica bit a bit

N

Xor per I'Or esclusivo bit a bit (

~ per il complemento a uno dell’operatore, nega cioe bit a bit il
dato

>> Spostamento a destra con segno (shift) del primo operando di
tanti bit quanti indicati dal secondo e riempi gli spazi vuoti con
il bit di segno

>>> Spostamento a destra senza segno (shift) del primo operando
di tanti bit quanti indicati dal secondo e riempie gli spazi vuoti
con zero

<< per lo scorrimento a sinistra(shift)

Tavole della verita

55

OR|

B A|B

true true

false true

true true

false false

NOT !

true

false

true

false

Esercizi

1. Scrivere un programma che, letto in input un valore numerico, dica se &
positivo o negativo.

2. Scrivere un programma che, dato un numero intero in input, visualizza il suo
doppio se € pari, il triplo se & dispari.

3. Scrivere un programma che, dati due numeri, calcoli la somma se sono
entrambi positivi, il prodotto altrimenti.

4. Scrivere un programma che, dato il prezzo di un prodotto, applichi uno sconto
del 12% se il prezzo € inferiore a € 30,00, del 25% altrimenti.

5. Scrivere un programma che, dati base e altezza di un triangolo, calcoli I'area
se sono entrambi positivi, oppure stampi il messaggio "Valori di input errati”.

6. Scrivere un programma che, presi in input gli estremi a e b di un intervallo e
un valore x, visualizzi il messaggio "Il valore & interno all'intervallo” se a < x <
b, altrimenti "Il valore & esterno all'intervallo”. Scrivere un algoritmo che, letti
in input due numeri interi, verifichi se il primo € multiplo del secondo.

7. Scrivere un programma che, dato un numero intero in input, visualizza il suo
doppio se € pari, il triplo se e dispari.

8. Scrivere un programma che, dati due numeri, calcoli la somma se sono
entrambi positivi, altrimenti calcoli la differenza tra il maggiore e il minore.

9. Scrivere un programma che, dati i lati di un triangolo, calcoli il perimetro se
questi tre valori possono essere i lati di un triangolo, altrimenti stampi il
messaggio "Valori d'input errati".

56

10.Scrivere un programma che, preso in input un voto, dica se € corretto
(compreso tra 1 e 10).

11. Scrivere un programma che, dato il consumo di acqua di un utente, espresso in
m3, calcoli I'importo della bolletta, sapendo che ogni bolletta comprende una
quota fissa di 20 euro e una quota variabile di 2,50 euro/m3 per i primi 100
metri cubi d'acqua, di euro 4,00/m3 per i metri cubi in eccesso.

12. Scrivere un programma che determini il prezzo d'ingresso al cinema
considerando che clienti con un’eta compresa tra 18 e 65 anni pagano il
prezzo pieno, mentre per eta diverse da queste il prezzo € la meta del prezzo
pieno. Si effettuino i dovuti controlli sui valori immessi in input.

13. Scrivere un programma per controllare la correttezza di una data ricevuta in
ingresso attraverso tre diversi input: giorno, mese e anno. Tutti gli input
devono essere numerici. Si effettuino i dovuti controlli sui valori immessi in
input.

14. Progettare un programma che dati in input due orari della stessa giornata
visualizzi la differenza in ore, minuti e second.i.
Esempio:
Ora 1: 10
Minuti 1: 14
Secondi 1: 18
Ora 2: 5
Minuti 2: 9
Secondi 2: 2
Differenza: 5:5:16

15. Realizzare un programma che fornite due date in input, visualizzi il numero di
giorni che intercorrono tra loro. Ad esempio:

Data antecedente: 10/08/2018 Data successiva: 08/01/2022

Giorni che intercorrono fra le due date: 1243

Per ogni data prevedere l'inserimento distinto di giorno, mese, anno. Non &
previsto che Ila prima data inserita debba necessariamente essere
I'antecedente.

Non si considerino gli anni bisestili, i mesi si suppongono tutti di 30 giorni e gli
anni compresi tra il 1970 e 'anno corrente.

Si controlli la correttezza delle date inserite.

16. Scrivere un programma che determina se un anno inserito da tastiera e
bisestile.

17.Scrivere un programma che, letto in input un valore numerico, dica se €&
positivo, negativo o nullo.

57

18.Scrivere un programma che, presi in input 3 numeri, visualizzi il valore
maggiore.

19.Scrivere un programma per visualizzare in ordine crescente tre valori numerici
ricevuti in input.

20. Scrivere un programma che legga da tastiera i valori delle lunghezze dei tre
lati di un triangolo e determini se il triangolo € equilatero, isoscele, rettangolo o
scaleno.

21.Si realizzi un programma che, dato il prezzo di un prodotto e la quantita
acquistata, calcoli il prezzo totale, tenendo conto che il venditore applica uno
sconto del 10% se si acquistano piu di 5 pezzi, del 15% se si acquistano piu di
10 pezzi o del 20% se si acquistano piu di 20 pezzi.

22, Progettare un programma che chieda in input tre valori interi compresi
nell'intervallo [10-1000]. L'algoritmo deve verificare se almeno due dei tre
numeri condividono la cifra meno significativa, e in questo caso dovra
visualizzare la cifra condivisa. Nel caso non ci sia alcun numero che condivide
la cifra meno significativa si dovra visualizzare un messaggio appropriato.
Esempi:

Input: 41, 22, 71 — Output: 1

Input: 23, 32, 42 — Output: 2

Input: 57, 37, 17 — Output: 7

Input: 14, 53, 98 — Output: “Nessun valore condivide I'ultima cifra”

Input: 9, 99, 999 — Output: “Una delle cifre non si trova nellintervallo
[10-1000]"

23. Lo spazio espresso in metri di frenata di un'automobile & stimato mediante la
seguente formula, supponendo che il tempo di reazione del guidatore sia pari
ad 1 secondo: spazio = velocita2 / (250 * COEFFICIENTE)
dove velocita € la velocita in km/h, e COEFFICIENTE € un coefficiente relativo
alle condizioni stradali, come indicato dalla seguente tabella:

Condizioni stradali COEFFICIENTE

Asfalto ruvido 0,6
Asfalto liscio 0,5
Asfalto bagnato 0,4

Asfalto ghiacciato 0,1

58

Progettare un programmache calcola lo spazio di frenata a partire dalla

velocita data in input e dal coefficiente sulle condizioni stradali. Usare lo
switch-case per risolvere I'algoritmo.

24. Gli abbonamenti della GTT di Torino possono riguardare zone diverse (urbano
- 1, suburbano - 2, urbano+suburbano - 3) e possono essere settimanali (S),
mensili (M) o annuali (A). | costi sono quelli indicati nella seguente tabella:

Zona\Durata S M A
1 12,00 € 38,00 € | 310,00 €
2 9,80 € 35,50 € | 319,50 €
3 15,70 € 56,50 € | 508,50€

Gli abbonamenti per gli studenti hanno una riduzione del 50%.

Progettare un programma che calcola il costo del’abbonamento a partire dal tipo,
dalla durata e se ad acquistarlo € uno studente o meno.

25.Progettare un programma che accetti tre valori numerici interi e li visualizzi in
ordine crescente.

26.Progettare un programma che richieda l'inserimento di una temperatura in
gradi Celsius e visualizzi un messaggio come indicato nella seguente tabella:

Temperatura (t) Messaggio
t>=30 “Molto caldo”
20<=1t<30 “Caldo”
10<=t<20 “Ideale”
0<=t<10 “Freddo”
t<O “Molto freddo”

27.Progettare un programma che calcoli le radici nel campo reale di un’equazione
di secondo grado, dati in input i coefficienti a e b e il termine noto c.

28.Progettare un programma che visualizzi il maggiore fra tre numeri dati in input.
Dati

Input Output Lavoro

59

a max

b

Cc

Relazione tra ingresso e uscita

se a>b trovareilmaxtraaec
altrimenti trovare ilmaxtrabec

se a>b
se a>c

max = a
altrimentiilmax é C

altrimenti

se b>c

allorailmax eb

altrimenti il max e c

29.

Struttura di selezione multipla switch/case

La struttura di selezione multipla switch/case consente di eseguire le istruzioni di un
blocco di codice, identificato da una particolare etichetta, se il valore costante che
questa rappresenta € uguale al valore dell’espressione da valutare, che puo essere
di tipo byte, short, char, int, String ed enumerativo.

switch (expression)

{

60

case valuel: statements;
break;

case value2:

statements;

break;
... [default]: statements;

}

61

Switch
expression

=Y Statement 1

e 1aas 2 Statement 2

e~ 4 Statement N

v
»> Default End switch
statement

La keyword switch €& seguita dalle parentesi tonde () che racchiudono
I'espressione da valutare.

Tra le parentesi graffe { }, si ha un insieme di etichette (keyword case). Il valore
dell'etichette deve essere una costante. Chiude il blocco switch una clausola non
obbligatoria (keyword default), che esegue delle istruzioni se tutti i blocchi case non
hanno un valore corrispondente al valore dell’espressione switch.

62

Listruzione break interrompe il flusso esecutivo del codice facendolo uscire dalla
struttura switch, altrimenti viene valutato anche il caso successivo.

class ProvaSwitch {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.println("inserisci il giorno da 1 a 7");
int giornoDellaSettimana = in.nextInt();
String nomeGiorno;
switch (giornoDellaSettimana) {
case 1:
nomeGiorno "Lunedi";
break;
case 2:
nomeGiorno "Martedi";
break;
case 3:
nomeGiorno "Mercoledi"”;
break;
case 4:
nomeGiorno "Giovedi";
break;
case 5:
nomeGiorno "Venerdi";
break;
case 6:
nomeGiorno "Sabato";
break;
case 7:
nomeGiorno "Domenica";
break;
default:
nomeGiorno "non valido";
}
System.out.println("il giorno della settimana e:
nomeGiorno);

}

Codice

Multi-case

Se si omette il break, vengono eseguiti tutti i blocchi a partire da quello per cui
I'etichetta € uguale all'espressione.

int valore = 0;

switch (valore) {

case -1:

System.out.println("-1 negativo");
break;

case 0:

System.out.println("valore verificato" +valore);

case 1:

System.out.println("case 1 eseguito per mancanza del break");
break;

case 2:

System.out.println(2);

break;

default:
System.out.println('default');

}

Si sfrutta questa proprieta del break per fare dei controlli multipli. Realizzare un
programma che visualizzi il numero di giorni in base al mese e all’anno inseriti:

Siccome piu mesi hanno trentuno giorni si raggruppano in una sequenza di case
vuote, l'ultima case fissa il numero di giorni e € chiusa con il break. La stessa cosa
per i mesi di trenta giorni.

class SwitchMultiCase {
public static void main(String[] args) {

Scanner in = new Scanner(System.in);

64

http://jdoodle.com/ia/kNV

System.out.println("inserisci mese");
int mese = in.nextInt();
System.out.println("inserisci anno");
int mese = in.nextInt();
int numeroGiorni = 0;
switch (mese) {
case
case
case
case
case
case
case
numeroGiorni
break;
case 4:
case 6:
case 9:
case 11:
numeroGiorni
break;
case 2:
if (((anno % 4 == @) && !(anno % 100 == 0)) || (anno % 400

numeroGiorni 29;
else
numeroGiorni 28;
break;
default:
numeroGiorni = -1;
break;
}
System.out.println("Numero di giorni = " + numeroGiorni);

}

Nel case due si verifica se 'anno e bisestile.

Esercizi:

1. Scrivere un programma che, preso in input un valore compreso tra 1 e 12,
visualizzi il nome del mese corrispondente.

2. Scrivere un programma per convertire un numero intero N compreso tra 1 e
365, fornito in input, nel giorno e mese corrispondente. Si consideri un anno
non bisestile.

3. Il biglietto d'ingresso a un teatro ha le seguenti tariffe. Per i bambini di eta
inferiore a 6 anni l'ingresso € gratuito, per gli studenti 8 euro, per i pensionati
10 euro, per tutti gli altri 15 euro. Creare un programma in cui l'utente inserisce
un numero tra 1 e 4 e viene comunicato il prezzo relativo all'opzione scelta. Se
il numero non & un'opzione valida viene mostrato un messaggio di errore.

4. Progettare un programma che prenda in input un numero intero, sia negativo,
sia positivo, e visualizzi il numero come parola se € compreso nell’intervallo
[-9, +9], mentre visualizzi la scritta “Other” diversamente. Si provi ad usare |l
costrutto switch-case.

Operatore ternario ?:

Oltre ai costrutti if ... else e switch e possibile modificare il flusso di un programma (a
seconda che si verifichi una condizione) tramite I'operatore ternario. La cui sintassi é:

condizione ? istruzionei; : istruzione2;

Che si traduce come: se la condizione € vera esegui l'istruzione 1, in caso contrario
esegui l'istruzione 2.

Questo operatore € comodo se si devono affrontare condizioni semplici del tipo if...
else mentre € meno adatto a controlli complessi, anche perché si scrive su una linea

singola e non si pud andare a capo.

L'operatore ternario pud essere usato per assegnare un valore a una variabile
usando la forma:

<variabile> = <condizione>?<valorei1>:<valore2>

Alla variabile viene assegnato direttamente il risultato del controllo ternario.

int numero=in.nextInt();

String risultato=numero%2==0 ? "numero pari" : "numero

dispari”;

System.out.println(risultato);

e possibile combinare tra loro due o piu operatori ternari per gestire situazioni piu
complesse.

Loop

Capita che per risolvere un problema una o piu istruzioni devono essere ripetute piu
volte. Se si vogliono visualizzare i numeri da 1 a 10 (ma potrebbe essere da 1 a
1000) invece di scrivere le dieci istruzioni:

1. System.out.printin(1);

10. System.out.printin(10);

Si pud usare un LOOP cambiando semplicemente il numero con una variabile che
aumenta di uno.

scrivi(numero)

numero=numero+1

Per fare questo tutti i linguaggi possiedono dei costrutti di tipo loop. Java consente
tre strutture iterative:

Struttura di iterazione while

Questo costrutto esegue lo stesso blocco d'istruzioni finché una condizione € vera.
La sua sintassi € la seguente:

while (condizione) {

67

Istruzioni;

}

Ve

ISLrziorrniy

Abbiamo:

¢ la keyword while, contenente la condizione da valutare
e un blocco di codice scritto tra le parentesi graffe { }.

I'esempio di prima diventa:

public class While {
public static void main(String[] args) {
int numero =
while (numero < 11) {

system.out.println(numero);
numero++;

Il ciclo while si pu0 interpretare in questo modo:

Finché la variabile numero € minore al valore di 11, stampare il numero.

68

L’istruzione numero++ &€ fondamentale poiché permette di modificare il valore di
numero. Se non ci fosse questa istruzione il ciclo while sarebbe infinito, perché la
condizione sarebbe sempre vera, dato che la variabile numero € sempre minore di

11.

Lo schema principale é:

numero =1 Iniziallizza la condizione

while(numero<11){ Testa la condizione

istruzioni;

numero++; Modifica la condizione

Nei cicli spesso si fa uso di due variabili particolari:

1. contatore: utilizzata per contare quante volte sono eseguite determinate

istruzioni oppure lintero ciclo. Viene inizializzata (spesso a zero) e
incrementata ogni volta di uno e € usata anche come condizione per uscire dal
ciclo.

. accumulatore: cioé una variabile nella quale ogni nuovo valore non

sostituisce il valore corrente ma si accumula a esso. Si pensi al display della
cassa di un supermercato in cui ogni volta che si passa un prodotto il prezzo si
somma al precedente.

Esempio di Codice

Struttura di iterazione do/while

La struttura do/while consente, come la struttura while, di ripetere un blocco
d'istruzioni finché una condizione € vera. Nel do while pero le istruzioni vengono
eseguite almeno una volta, in quando la condizione viene testata in coda. Sintassi
do/while:

69

https://www.jdoodle.com/a/LRV

do {
istruzione;

j while (condizione);

dove:

e la keyword do rappresenta l'inizio del ciclo
e Le istruzioni poste tra le parentesi graffe { }

e la keyword while seguita con la condizione da valutare.

70

Start

Execule while block
code

T

Yos
Condition
true?

i

e

Elmrt‘e code
outside do... while

public class DoWhile {
public static void main(String[] args) {
int a = 8;

System.out.print("a = "
do {

71

System. .print(a-- + " ");
(a >= 9);

Struttura di iterazione for

La struttura for consente di ripetere un blocco d'istruzioni finché una condizione &
vera. A differenza di while e do/while, for consente di gestire all'interno del suo
costrutto delle espressioni aggiuntive con cui:

e Siinizializzano

e Sitestano

e Si modificano delle variabili di controllo.

Sintassi for:

for (expressioni; expression2; expression3) {

istruzione; }

Iniziallizza la condizione Modifica la condizione

Testa la condizione

La keyword for & seguita dalle parentesi tonde () che racchiudono tre espressioni:

1. expression1: inizializza le variabili,
2. expression2: controlla se la condizione € vera
3. expression3: che modifica le variabili di expression2.

72

Il costrutto termina con le parentesi graffe { } del blocco d'istruzioni che sara eseguito
ciclicamente finché la condizione & vera.

public class For {
public static void main(String[] args) {

System.out.print("a = ");
for (int a = 8; a >= 0; a--)

{

System.out.print(a-- + " ");

Output a =87 65432160

Il ciclo for & semplice da usare quando si conosce il numero di volte che il ciclo deve
essere ripetuto, infatti fa quasi sempre uso (non €& un obbligo) di una variabile
contatore:

e inizializzata nella prima espressione

e controllata nella seconda
e modificata nella terza

Istruzioni break, continue

Le strutture iterative possono essere alterate durante il loro flusso esecutivo
mediante le istruzioni break e continue:

Listruzione break interrompe l'iterazione:

Nel programma che stampa i primi dieci numeri inseriamo un controllo sul numero da
stampare se questo numero € 5 inseriamo l'istruzione break:

73

public class Break

public static void main(String[] args)
{
System.out.print("a = ");
for (int a = 1; a <= 10; a++) // finché a <= 10
{
if (a == 5)

Forza l'uscita dal ciclo

break; «——

}

System.out.print(a + " ");

}
System.out.println();
int a = 1;

System.out.print("a = ");
while (a <= 10) // finché a <= 10

if (a == 5) Forza I'uscita il ciclo
break;

System.out.print(a++ + " ");

}
}
} _

Output :
a=1234
a=1234

Listruzione break interrompe l'iterazione sia del ciclo for sia del ciclo while; infatti
quando la variabile a & uguale a 5 il programma esce dalliterazione, pertanto
saranno stampati solo i valori fino a 4.

Listruzione continue, invece, salta le rimanenti istruzioni del corpo della struttura e
procede con la successiva iterazione.

Nel programma precedente sostituiamo break con continue.

74

public static void main(Stringl] args) {
System.out.print(“a = ");
for (int a = 1; a <= 10; a++)

{
if (a == 5)
{ . o
contitings Le istruzioni che seguono non vengono
y ! eseguite e si esegue l'iterazione successiva
System.out.print(a + (a !'=10 72 ", " : ""));
}

System.out.println();
int a = 1;

System.out.print("a):
while (a <= 10)
{
if (a == 5)
{
a++; Le istruzioni che seguono non vengono
cont imfe';’/ eseguite e si esegue I'iterazione successiva
}
System.out.print(a + (a !=10 2?2 ", " : ""));
ats;
}
L vt
}

Output :
a=1234678910
a=1234678910
Esercizi

1. Scrivere un algoritmo che visualizza i numeri naturali dispari da 3 a 21.

2. Scrivere un algoritmo che visualizza in ordine decrescente i numeri pari positivi
inferiori a 50.

3. Scrivere un algoritmo che visualizza tutti i numeri naturali inferiori al valore
assoluto di un numero scelto dall'utente.

4. Scrivere un algoritmo che visualizza in ordine crescente tutti i numeri naturali
compresi tra due numeri scelti dall'utente (estremi inclusi).

5. Scrivere un algoritmo che, presi in input 15 numeri interi, dica quanti valori pari
sono stati inseriti.

6. Scrivere un algoritmo che, presi in input 20 numeri interi, dica quanti valori
negativi sono stati inseriti.

75

7. Scrivere un algoritmo che, presi in input due numeri interi N e X (con N>0),
visualizzi gli N numeri interi successivi a X.

8. Scrivere un algoritmo che, presi in input N valori interi (N > 0), calcoli la
somma dei numeri positivi e la somma dei valori assoluti dei numeri negativi.

9. Calcolare il prodotto di due numeri naturali, mediante somme successive.

10. Calcolare quoziente e resto intero della divisione tra due numeri naturali,
mediante differenze successive.

11.Scrivere un algoritmo che, dato un numero compreso nellintervallo [1, 10],
visualizzi i suoi primi 10 multipli.

12. Si sviluppi un programma che, come nel caso di una macchina distributrice
di caffe, riceve in ingresso un numero intero positivo N (corrispondente a un
importo da pagare in centesimi) e, successivamente, una sequenza di numeri
interi corrispondenti alle monete inserite, che possono essere da 1, 5, 10, 20 e
50 centesimi. Il programma deve ripetere I'acquisizione di ciascun numero se
non corrisponde a una moneta tra quelle indicate. Appena I'importo richiesto N
viene raggiunto o superato, il programma interrompe l'acquisizione della
sequenza e restituisce una serie di numeri interi corrispondenti al resto in
monete da 1 e 5 centesimi.Ad esempio, se il programma riceve N=101 e la
sequenza 50, 20, 20, 20, produce in uscita 5, 1, 1, 1, 1

13. Realizzare un programma in grado di calcolare l'altezza media degli
studenti di una classe, dando in input il numero di allievi della classe.

14. Realizzare un programma in grado di calcolare l'altezza media degli
studenti di una classe, senza fornire inizialmente il numero di allievi della
classe.

15. Progettare un algoritmo che legga una sequenza di valori numerici fino alla
lettura di un valore 0 e scriva quanti valori sono stati letti e la loro somma.

16. Progettare un algoritmo che, dato un valore numerico numero, legga n
valori e conti quanti di essi sono maggiori di numero scrivendo il risultato.

17. Progettare un algoritmo che, dato un valore numerico numero, legga n
valori e conti quanti sono i valori maggiori di numero, quanti i valori uguali a
numero e quanti quelli minori.

18. Progettare un algoritmo che, dato un valore numerico numero, legga n
numeri e conti quanti di questi sono multipli di numero scrivendo il risultato.

19. Progettare un algoritmo che legga una sequenza di valori humerici fino a
che la loro somma & minore di 100 e scriva la somma ottenuta e quanti sono i
valori letti.

20. Progettare un algoritmo che, dati due valori numerici numMinore e
numMaggiore, legga n valori e conti quanti di essi sono compresi tra
numMinore e numMaggiore scrivendo il risultato.

21. Progettare un algoritmo che permetta di inserire un numero compreso
nell'intervallo [1-1000] e, partendo da questo, sommi i primi cinque numeri che

76

sono divisibili sia per 3, sia per 5, visualizzando sia i numeri che rispettano il
criterio, sia il risultato finale.

22. Progettare un algoritmo che prenda in input un valore numerico maggiore o
uguale a 10 e restituisca la somma di tutte le cifre che lo compongono.

23. Progettare un algoritmo che indichi a video se un numero &€ o meno
palindromo.

Un numero palindromo € un numero che invertito restituisce lo stesso numero
originale, ad esempio:
a. -1221 e palindromo;

707 & palindromo;

11212 non é palindromo;

121 e palindromo;

-12321 € palindromo;

1001 € palindromo;

g. -744117 non é palindromo.
Per verificare se un numero é palindromo potrebbe essere utile determinare
I'inverso del numero dato, da confrontare con il numero originale.
Per trovare l'inverso di un numero ricordati che puoi estrarre una cifra dopo
I'altra con il % e spostarla di posizione moltiplicandola per 10.
Progettare un algoritmo che, dato in input un numero intero positivo, visualizzi
la somma della cifra piu significativa e della cifra meno significativa del
numero. Ad esempio:
Input: 252 — Output: 4
Input: 257 — Output: 9
Input: 0 — Output: 0
Input: 5 — Output: 10
Input: -10 — Output: ERRORE
Progettare un algoritmo che dato in input un numero intero positivo visualizzi la
somma delle sue cifre pari.

24. Progettare un algoritmo che prenda in input due numeri nell'intervallo
[10-99], e se hanno una cifra in comune visualizzi la stringa “I due numeri
condividono cifre”, altrimenti visualizzi “I due numeri non condividono cifre”.

25. Progettare un algoritmo che, dato in input un numero intero positivo
espresso in base 10, fornisca la sua conversione in base 2 (non si utilizzino gli
array). Per visualizzare correttamente il numero binario si utilizzi la tecnica per
determinare l'inverso di un numero consigliata nell’esercizio per individuare se
il numero & palindromo.

26. Progettare un algoritmo che prenda in input un numero intero maggiore di 1
e visualizzi tutti i suoi fattori primi. Ad esempio, i fattori primi di 6 sono 1, 2, 3,
6.

27. Progettare un algoritmo che preso in input un numero intero positivo indichi

se € o0 meno un numero perfetto. Un numero & perfetto se & uguale alla
77

-0 oo00T

somma dei suoi divisori propri, ad esempio, 6 € un numero perfetto in quanto é
somma dei suoi divisori propri: 1 + 2 + 3 = 6.

28. Progettare un algoritmo che, leggendo n valori numerici, verifichi se essi
sono forniti in ordine crescente 0 meno.

29. Progettare un algoritmo che, dato un valore numerico k, legga n coppie di
valori e conti quante di queste coppie hanno come prodotto il valore k.

30. Dati n valori numerici in ordine crescente, progettare un algoritmo che
scriva se i numeri forniti a partire dal secondo differiscono ognuno dal
precedente di un valore costante. In caso affermativo I'algoritmo deve scrivere
il valore della differenza, in caso negativo l'algoritmo deve scrivere il valore
massimo delle differenze.

31. Una leggenda orientale narra di un matematico che, in cambio di alcuni
servigi resi al re, chiese la seguente ricompensa: «un chicco di riso per la
prima casella di una scacchiera, due chicchi di riso per la seconda casella di
una scacchiera, quattro chicchi di riso per la terza casella... e cosi via per tutte
le 64 caselle della scacchiera». Progettare un algoritmo che, a partire dal
numero N di caselle che si intendono riempire, calcoli il numero complessivo di
chicchi di riso che spettano come ricompensa.

32. Un’onda marina anomala dimezza la propria altezza ogni chilometro
percorso e scompare raggiungendo un’altezza pari a zero quando l'altezza
scende al di sotto del metro.

33. Progettare un algoritmo che calcoli, a partire dai valori dell’altezza iniziale h
e dal numero di chilometri percorsi k, I'altezza raggiunta dall’'onda.

34. Modificare I'algoritmo precedente in modo che, a partire dalla sola altezza
iniziale dellonda h, determini il numero di chilometri necessario prima che
essa scompaia.

35. Nella disintegrazione atomica dei materiali radioattivi la massa perduta nel
periodo di un anno é data dal prodotto della massa residua per una costante di
decadimento caratteristica del tipo di materiale.

36. Progettare un algoritmo che calcoli, a partire dai valori della massa iniziale
espressa in grammi, della costante di decadimento e del numero di anni
trascorsi, la massa residua di materiale.

37. Modificare l'algoritmo precedente in modo che, a partire dalla massa
iniziale espressa in grammi e dalla costante di decadimento, determini il
numero di anni necessario prima che la massa residua di materiale sia
inferiore a 1 g.

38. La popolazione di un particolare batterio raddoppia ogni ora. Progettare un
algoritmo che, a partire dal numero di ore trascorse e dal valore espresso in
«unita di carica batterica» della consistenza iniziale della popolazione
batterica, ne calcoli la consistenza finale raggiunta.

39. La massa di un particolare materiale radioattivo dimezza ogni millennio.

Progettare un algoritmo che, a partire dal numero di millenni trascorsi e dal
78

valore espresso in grammi della massa iniziale del materiale radioattivo, calcoli
la massa finale residua.

40. Dato un valore numerico costante k (non necessariamente intero),
I'N-esimo numero di Bernoulli € dato dalla somma dei primi N numeri interi
elevati alla potenza k; per esempio per N = 5:
1k + 2k + 3k + 4k + 5k
Progettare un algoritmo che determini, a partire dai valori della costante k e del
numero N, il numero di Bernoulli relativo.

41. La media geometrica di N numeri x1 , x2 , ..., XN & data dalla seguente
formula:

(x1*x2*...*xN)1/N
Progettare un algoritmo che calcoli la media geometrica di N numeri positivi
inseriti dall’'utente.

42. |l filosofo Zenone di Elea motivava il fatto che il moto € solo un’illusione con
la seguente argomentazione: «dovendo percorrere una certa distanza si dovra
coprire con un primo spostamento meta della distanza, con un secondo
spostamento meta della distanza rimanente, con un terzo spostamento meta
della distanza ancora rimanente e cosi via senza arrivare mai a destinazione».
Progettare un algoritmo che, data la distanza da percorrere e il numero di
spostamenti effettuati, calcoli la distanza effettivamente coperta.

In una acciaieria il semilavorato metallico grezzo viene prodotto con uno
spessore di alcuni centimetri e viene successivamente lavorato passando per
una serie di N laminatoi, ciascuno dei quali diminuisce lo spessore del 10%.

43. Progettare un algoritmo per determinare lo spessore del laminato a partire
dallo spessore del semilavorato grezzo e dal numero di laminatoi presenti nel
processo di lavorazione.

44. Modificare l'algoritmo precedente in modo che determini il numero di
laminatoi necessari nel processo di lavorazione per ottenere un laminato di
spessore definito a partire dallo spessore del semilavorato.

45. Un foglio di carta in formato A0 ha dimensioni 118,8 x 84 cm; a partire da
questo un foglio in formato A1 ha il lato lungo uguale al lato corto del formato
A0 (84 cm) e il lato corto uguale alla meta del lato lungo del formato AO (118,8
cm : 2 = 59,4 cm). Per calcolare le dimensioni dei formati A2, A3, A4, ... si
procede sempre nello stesso modo: il lato lungo € uguale al lato corto del
foglio immediatamente piu grande, mentre il lato corto & esattamente la meta
del lato lungo del foglio immediatamente piu grande e cosi via. Progettare
I'algoritmo che calcola le dimensioni di un foglio in formato AN, dove N viene
fornito come dato di ingresso.

46. Una popolazione di insetti ha un accrescimento mensile dato dalla
seguente formula:
k*P*(1-P/M)

79

dove P & la popolazione di insetti, k & la costante di accrescimento, M €& la
massima popolazione sostenibile dall’ambiente locale.

47. Realizzare un algoritmo che abbia come dati il numero N dei mesi, la
costante k, il massimo M, la popolazione iniziale Pi e che calcoli come risultato
la popolazione di insetti trascorsi N mesi dal momento iniziale.

48. L'accrescimento della popolazione umana €& guidato da una semplice legge
matematica: I'incremento della popolazione tra un anno e il successivo & dato
dal prodotto di una costante (il tasso di accrescimento) per la dimensione della
popolazione. Realizzare I'algoritmo che consente di simulare anno per anno i
valori della dimensione della popolazione a partire da:

I'anno iniziale della simulazione;

il valore della dimensione iniziale della popolazione;
il valore del tasso di accrescimento;

I'anno finale della simulazione.

49. Una pianta cresce ogni mese della meta di quanto € cresciuta il mese
precedente (il primo mese cresce della meta dell’altezza iniziale). Progettare
I'algoritmo che calcola I'altezza finale della pianta a partire dall’altezza iniziale
e dal numero di mesi.

50. Nel 1593 il matematico dilettante francese Francois Viete approssimo il
valore numerico di T con il seguente metodo, che fornisce risultati
progressivamente piu precisi al crescere del numero n di iterazioni:

c,=0 p,=2

f
,1+a:n_I

“\—z P

_ Py

cﬂ

51. Realizzare un algoritmo che, dato il humero n di iterazioni da calcolare,
produca la stima pn del valore di 1 nell'ipotesi di un esecutore che sia in grado
di calcolare direttamente la radice quadrata di un numero.

52. La prima stima precisa del valore di 11 € stata fornita dal matematico cinese
Tsu Chung-Chi nel V secolo d.C. utilizzando il seguente metodo iterativo:

X, = V2
%11 =V2 Va2

dove, a partire dal valore iniziale x0 , viene calcolato ogni volta il valore
successivo xn + 1 a partire dal valore precedente xn; al termine del
procedimento — dopo N iterazioni del calcolo — la stima del valore di 11 € data
dalla seguente formula:
s=2*xN

53. Progettare un algoritmo che, a partire dal numero di iterazioni N, calcoli una
stima s del valore di 11 nell’ipotesi di un esecutore che sia in grado di calcolare
direttamente la radice quadrata di un numero.

80

54. La societa di assicurazioni “lo speriamo che me la cavo” ha stipulato N
contratti di assicurazione su motociclette secondo la seguente formula:
se la moto ha cilindrata maggiore di 350, il costo dell'assicurazione & uguale a
una quota fissa Q piu € 30 per ogni mille euro del prezzo della moto;
altrimenti il costo dell’assicurazione € uguale alla quota fissa Q piu € 20 per
ogni mille euro del prezzo della moto.

55. Progettare un algoritmo in grado di fornire in output quanto ha incassato
I'assicurazione.

56. Lo stipendio di un dipendente dell’azienda “Ma quanto mi costi” & formato
da 3 parti: salario accessorio (A), stipendio base (B), compensi aggiuntivi (C).
Sulla parte A si applica la trattenuta del 19%, sulla parte B il 16%, sulla parte C
il 2%. Sul totale A+B+C viene trattenuto un ulteriore 0.5%.

Progettare un algoritmo che per ognuno dei dipendenti visualizzi il numero di
matricola, il totale delle trattenute e lo stipendio finale netto. Si visualizzi infine
il totale degli stipendi lordi e il totale delle trattenute di tutti i dipendenti.

57. Progettare un algoritmo che preveda l'inserimento delle altezze in
centimetri di un gruppo di persone, e visualizzi I'altezza minima e il numero di
persone che hanno un’altezza pari a quella minima. Si effettuino tutti i controlli
necessari sui valori inseriti in input.

I programma é utilizzato per determinare laltezza minima e massima
nel’ambito di un’applicazione statistica sulla crescita degli studenti italiani in
eta scolare, indicando anche il numero di persone che hanno la stessa altezza
minima o0 massima.

Il programma prende in input il numero delle persone da analizzare e le
altezze di ogni singolo individuo. Fornisce in output l'altezza minima e |l
numero di persone che hanno un’altezza pari al minimo, e l'altezza massima
con il numero di persone che hanno I'altezza pari al massimo.

Il programma prevede che venga richiesto in input il numero di persone. Le
variabili per contenere I'altezza minima e massima devono essere inizializzate
a dei valori che permettono la loro immediata sostituzione. Inoltre sara
necessario inizializzare due variabili che contano il numero di persone con
l'altezza minima e il numero di persone con laltezza massima.
Successivamente viene impostato un ciclo di controllo delle altezze con
I'altezza minima. Se l'altezza inserita in input risulta essere inferiore al minimo
la variabile del minimo dovra essere sostituita con il nuovo minimo individuato,
e il contatore delle persone che hanno quella altezza minima dovra essere
inizializzato nuovamente a zero. Se invece l'altezza inserita risulta essere pari
al minimo bisognera incrementare il contatore. Nel caso in cui l'altezza inserita
fosse superiore al minimo quest'ultima non dovra essere conteggiata. I
procedimento si ripetera per l'altezza massima. Al termine il programma
visualizza l'altezza minima, l'altezza massima, il numero di persone che hanno

81

un'altezza pari al minimo e il numero di persone che hanno un'altezza pari al
massimo.

F—h\l

*
T P i

T
Faza = E B Vera mam = dtares
——— e, ——
‘\-__\-_\\- "J_\-__A

Sexivi min romdin

S msooy run Al A

58.

59.

60.

61.

62.

63.

In una gara podistica si vogliono visualizzare il tempo migliore, il tempo peggiore e
il tempo medio di percorrenza. Si preveda l'inserimento dei tempi di percorrenza
dei diversi atleti effettuando tutti i controlli necessari sui valori inseriti in input. |
tempi di percorrenza vengono forniti in secondi.
Progettare un algoritmo che permetta di assemblare uno scatolone di pacchi di
farina usando pacchi da 5kg e 1kg. L'algoritmo deve prevedere l'inserimento dei
seguenti dati:

a. numero totale di kg da inserire in uno scatolone;

b. numero di pacchi da 5kg disponibili;

c. numero di pacchi da 1kg disponibili.
Uno scatolone puo ritenersi assemblato se sono presenti almeno tutti i kg che puo
contenere, considerando la somma dei kg dei pacchi da 5kg e da 1kg. Non & pero
possibile dividere i pacchi di farina, quindi se lo scatolone pud contenere 9kg di
farina, e si hanno solo 2 pacchi da 5kg e nessuno da 1kg, non & possibile
assemblare lo scatolone perché i pacchi da 5kg non possono essere divisi. Se
invece si hanno a disposizione 1 pacco da 5kg e 5 pacchi da 1kg € possibile
assemblare lo scatolone da 9kg perché avanza un pacco da 1kg intero e questo €
considerato ammissibile.
Si visualizzi come output una scritta che indichi se lo scatolone € o meno stato
assemblato.
Progettare un algoritmo che permetta di determinare il piu grande numero primo
fattore di un numero intero positivo dato. Si ricordi che per il teorema
fondamentale dell’aritmetica un qualsiasi numero naturale maggiore di 1 0 € un
numero primo o si pud esprimere come prodotto di numeri primi. Nel caso in cui il
numero inserito sia minore o uguale ad 1 si richieda l'inserimento del numero, in

quanto 0 e 1 non sono considerati primi.

Esempi:

Input: 21 — Output: 7 perché 7 & il piu grande numero primo (3 * 7 = 21)

Input: 217 - Output: 31 perché 31 & il piu grande numero primo (7 * 31 = 217)

Input: 13 - Output: 13 poiché 13 & il piu grande numero primo (13 = 13)

Input: 0 —» Richiedere I'immissione dell'input

Input: 45 - Output: 5 perché 5 ¢ il piu grande numero primo (3 * 3 * 5 = 45)

Input: -1 — Richiedere I'immissione dell'input

Progettare un algoritmo che prende in input un numero maggiore o uguale a 5 e
visualizzi un quadrato con le due diagonali, con una base e un’altezza pari al
numero inserito in input.

Ad esempio:

Input: & - Output:

% % % %k %k

* %k k*k
* *k *
*%k k*k

% % % %k %k

83

https://it.wikipedia.org/wiki/Teorema_fondamentale_dell%27aritmetica
https://it.wikipedia.org/wiki/Teorema_fondamentale_dell%27aritmetica

64.

65.

66.

67.

68.

Input: 8 - Qutput:

% % % %k %k %k %k *k
%* % * %
* * * 3k
* * % *
* * * 3k
%* % * %
% % % %k %k %k %k k

Un grande magazzino ha 4 reparti identificati dai numeri 1, 2, 3 e 4. La direzione decide
di applicare degli sconti ai prodotti dei diversi magazzini, differenziandoli per magazzino.
Si progetti un algoritmo in grado di richiedere in input le quattro percentuali di sconto
da applicare ai prodotti dei vari reparti e, successivamente richieda in input N prodotto
con il relativo reparto di appartenenza e il prezzo, e visualizzi per ciascun prodotto
inserito il prezzo scontato.

Progettare un algoritmo in grado di svolgere le quattro operazioni fondamentali su due
numeri.

Visualizzare inizialmente il seguente menu:

1) Somma

2) Sottrai

3) Moltiplica

4) Dividi

5) Esci

Se viene scelta una delle opzioni da 1 a 4 viene svolta I'operazione aritmetica richiesta
sui due numeri visualizzando il risultato. Successivamente viene nuovamente
visualizzato il menu e richiesto l'inserimento di due numeri.

Se invece viene scelta I'opzione 5 il programma deve terminare, salutando cortesemente
I'utente. Usare lo switch-case per il menu.

Progettare un algoritmo che preveda l'inserimento delle eta degli studenti della tua
classe e fornisca il numero di occorrenze del piu grande.

Progettare un algoritmo che visualizzi la rendita annuale di un investimento effettuato
presso la banca “Piu soldi per tutti”

La banca visualizza il piano di investimento usando il capitale iniziale in euro, la
percentuale di interesse e il numero di anni dell'investimento.

Il calcolo degli interessi si effettua tramite la seguente formula:

interessi = capitale * tasso / 100

e questi verranno sommati di anno in anno al capitale.

Ad esempio se la somma dell'investimento € di 30000 euro al tasso del 12.5% per 10
anni, il piano annuale dell'investimento dovra essere il seguente:

Anno | Interesse | Capitale
_____ |___________|__________
1T | 3750.00 | 33750.00
2 | 4218.75 | 37968.75
3 | 4746.09 | 42714.84
4 | 5339.35 | 48054.19
5 | 6006.77 | 54060.96

84

6 | 6757.62 |
7 | 7602.32 |
8 | 8552.61 |
9 | 9621.68 |

10 | 10824.39 |

60818.58
68420.90
76973 .51
86595.19
97419.58

69. Progettare un algoritmo che converta un numero binario in un numero in base 10. Il
numero binario € rappresentato su N bit, e il valore di N dovra essere fornito dall’utente.
L'utente dovra inserire le cifre del numero binario un bit alla volta, partendo dal bit
meno significativo (ossia dal bit di peso 2°). Il programma visualizzera il numero in base

70.

71.

10 corrispondente (non si utilizzino gli array).

Progettare un algoritmo che calcoli il valore massimo e minimo di un insieme di N
numeri inseriti da tastiera.
Progettare un algoritmo che analizzi una sequenza di numeri. I numeri dovranno essere

inseriti da tastiera e I'algoritmo dovra visualizzare i seguenti risultati:
e quanti sono i numeri positivi, nulli e negativi;
e quanti sono i numeri pari e dispari;

e se la sequenza dei numeri inseriti € crescente, decrescente oppure ne crescente,

ne decrescente.

Si osservi che una sequenza €& crescente se ogni numero € maggiore del
precedente, € decrescente se ogni numero € minore del precedente, mentre non e

crescente e neanche decrescente in tutti gli altri casi.

72.Progettare un algoritmo che calcoli il massimo comune divisore (MCD) di due numeri
interi positivi. Il MCD e definito come il massimo tra i divisori comuni ai due numeri.
Dati due numeri, nl1 e n2, il MCD di n1 e n2 e il massimo tra i numeri che sono
divisori (con resto uguale a zero) sia di n1 che di n2. In particolare si supponga che
nl sia minore di n2, il MCD ¢ il massimo tra i numeri compresi tra 1 e n1 che sono

divisori (con resto uguale a zero) sia di nl1 che di n2.

73.Progettare un algoritmo che calcoli il minimo comune multiplo (MCM) di due numeri

interi positivi.

Dati due numeri interi n1 e n2, il minimo comune multiplo & il piu piccolo numero m

che e divisibile (con resto pari a zero) sia per n1 che per n2.

74. Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un

quadrato di asterischi (**") di lato pari al valore numerico inserito.

Ad esempio:

Input: 4 - Output:
* % % %

% %k %k %

* % % %

% % % %k

75. Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
triangolo rettangolo di asterischi (**') di altezza e base pari al valore numerico

inserito.
Ad esempio:

Input: 4 - Output:

*

* %

85

76.

77.

78.

% % %k

% % % %k

Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
triangolo rettangolo di asterischi (**) di altezza e base pari al valore numerico
inserito, con il lato verticale spostato verso destra.
Ad esempio:
Input: 4 - Output:

*

* %

%* % %

% % % %

Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
quadrato i cui lati siano formati da asterischi (**) di lato pari al valore numerico
inserito.

Ad esempio:

Input: 5 - Output:

% % % %k %k

% % % %k %k

Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
triangolo rettangolo i cui lati siano formati da asterischi (**’) di altezza e base pari al
valore numerico inserito.

Ad esempio:

Input: 5 - Output:

*

* %

86

Array

Un array € una struttura dati indicizzata che pud contenere:

e dati primitivi,
e oggetti
e altri array

Un'array € caratterizzato da:

1. I nome che individua la struttura dati composta da vari elementi.
2. Un indice che consente di accedere agli elementi dell'array.

Se una variabile la si assimila a una scatola che contiene un valore. L'array si pud
assimilare a una cassettiera in cui ogni cassetto contiene un valore. Ogni cassetto &
numerato (indice) a partire da zero.

Cassettiera indica il nome dell'array e i
numeri indicano l'indice.

Le principali caratteristiche di un Array sono:
e Gli elementi contenuti nell'array devono essere dello stesso tipo.

e La lunghezza é fissa
e la lunghezza di un array deve essere dichiarata in fase d'inizializzazione

87

e |l primo elemento dell'array si trova nella posizione 0, l'ultimo nella posizione
n-1, dove n & la lunghezza dell’array.

: Elemento in posizione 4 Ultimo elemento
Primo elemento

Indice

Contenuto

Array di dimensione 10

Per utilizzare un array bisogna passare attraverso le fasi di:
1. Dichiarazione.

2. Creazione
3. Inizializzazione.

Dichiarazione

Come ogni variabile, un array deve essere dichiarato in Java. Questo pud essere
fatto in due modi equivalenti, ma il primo & piu coerente con lo stile Java.

Per dichiarare un array € necessario posporre (oppure anteporre) una coppia di
parentesi quadre all’identificatore.

Tipo[] nomeDellaVariabile;

oppure

Tipo nomeDellaVariabile[];

char[] caratteri; /* definizione di un array di Caratteri */
int[] numeri; /* definizione di un array di interi */

Moto[] modelli; /*definizione dell'array di oggetti di tipo Moto */

Il valore default delle variabili di tipo array é null.

Dichiarare un oggetto non significa creare un oggetto!

int[] a;

e a non contiene I'oggetto
e a contiene il riferimento all’oggetto

Creazione

Un array € un oggetto speciale in Java e, in quanto tale, va istanziato. La sintassi &
la seguente:

nomeVariabile = new TipoDiDato[n];

caratteri= new char[21];
/* inizializzazione di un array di caratteri */
numeri = new int[25];

/* inizializzazione di un array di interi */
modelli = new Moto[4];
/* inizializzazione dell'array di oggetti di tipo Moto */

E obbligatorio specificare al momento dell'istanza dell’array la dimensione dell’array
stesso.

89

a= new int[3]: "2 I .

Inizializzazione di un array e accesso ai suoi elementi

Il processo di creazione non ci fornisce un array vuoto, ma un array pieno di valori
predefiniti. Ad esempio, per un array d'interi, questo € 0 e per un array di oggetti, il
valore predefinito in ogni cella & null. Si accede a un elemento array (ad esempio,
per impostarne il valore, o visualizzarlo sullo schermo o eseguire un'operazione con
esso) tramite l'indice:

nomeDellaVariabile[indice]

Per inserire i dati un array, bisogna inserirli singolarmente in ogni elemento:

caratteri [0] = 'a’;
caratteri [1] 'b';

90

caratteri[20] = 'Z';

numeri [0] = 1;

numeri[l] = 7;

numeri [24] = 56;

modelli[@]= new Moto(.....);
modelli[3]= new Moto(.....);

Oppure in modo piu compatto durante la dichiarazione dell’array:

int a[] = {1,2,3}; a (array a una dimensione)

. a |

int a[l] = {1,2,3}; \

¢ del tutto equivalente a: 2 3\

1
s fo) 2)

af[0] = 1;
all] = 2; al0] a[l] a[2]
af2]l] = 3;

La variabile dichiarata a (detta referenza all'oggetto) contiene il riferimento
necessario a trovare l'oggetto puntato da a in memoria, in pratica a contiene
I'indirizzo di una locazione di memoria a partire dal quale &€ memorizzato I'oggetto.

char[] caratteri= {'a', 'b', 'c', 'd', 'e', ‘f', 'g', 'h', 'i",
v, 'z'};

Ill) lml, Inl, |OI, Ipl) q , r\, S , I_tl) u ,

91

Memoria

P . Incinzan
. ase dicharativa o : Fisici
c 01FF-0000 . g Cl0] 01FF000C
= . : D’ cl1)
char C[) new char{4]; J i P - 8byte
- . — 'd’ C{3] 01FF 0003
int |] = new int[3];
01FF:000¢ z
fase di inizializzazione — 4 - I[Ol ‘ uﬂ&
Cl0] = 3 ' .
C1] =b'; Fa -
C[2] ='¢'; 2
C[3] ='d'; - 1[2) 4 byte
0]=5
f1i]= 1 |
=2

Gli array definiscono, una proprieta, chiamata length, che restituisce la dimensione
effettiva dell’array stesso. Quindi:

caratteri.length

vale 21.

Per produrre tutti gli elementi di un array si esegue un ciclo dalla posizione zero alla
posizione n-1:

ProvaArray

plic static void main(String args[]) {
= new int[10];
or (int 1=0; i<=9; i++) {
x[1i] = 1i;

for (int i=0; i<x.length; i++) {
System.out.println("x["+i+"] = "+x[1]);

92

String stringa[] = {"primo","secondo", "terzo"};
or (int i=0; i<=2; i++)

System.out.println("stringa["+i+"] = "+stringal[i]);

1. Prima si dichiara "X[]" come nuovo oggetto Array di massimo 10 elementi.
2. Il primo ciclo for assegna a ogni elemento dell'Array il rispettivo numero "i".
3. Nel secondo ciclo stampa su schermo tutti gli elementi dell'array.

Il secondo Array & formato da elementi Stringa (Oggetti istanziati dalla Classe
String).

Prova il codice precedente

Ciclo avanzato for-each

Poiché in un array I'attraversamento € un operazione comune, Java fornisce una
sintassi alternativa che rende il codice piu compatto. Ad esempio, considera un ciclo
for che visualizza gli elementi di un array su righe separate:

for (int i = ©; i <values.length; i ++) {
int value = values [1];

System.out.println (value);

}

Il ciclo si pud scrivere in questo modo:

for (int value: values) {

System.out.println (value);

¥

Con questa variante del for non si devono specificare:

93

http://jdoodle.com/a/LoY

Il punto di partenza
La lunghezza dell’array
L'istruzione di modifica della condizione.

Java rileva che la variabile values & un array e assegna alla variabile value il
contenuto di ciascun elemento dell’array.

Questa variante del for consente di scrivere meno codice quando si usano gli array.

Utilizzare gli array nei metodi

| metodi possono sia ricevere come argomento sia una variabile indicizzata che un
intero array e possono restituire array.

Variabili indicizzate come argomenti di un metodo

Una variabile indicizzata di un array a, come a [i], pud essere utilizzata ogni volta
che e possibile utilizzare una variabile del tipo base dell'array. Una variabile
indicizzata pud quindi essere un argomento di un metodo, cosi come ogni altra
variabile dello stesso tipo base dell'array il valore della variabile a[i] non viene
modificata nel metodo.

Il metodo:

public int somma(int a, int b){
return a+b;

¥

Riceve come argomento due numeri interi, si pud chiamare il metodo passando
come parametro due interi indifferentemente che siano variabili o costanti intere o
elementi di un array di interi;

int[] numero={1,2,3};
int a=5;

int b= somma(a,numero[1l]);

94

Array come argomento di un metodo

Il modo con cui si specifica che I'argomento di un metodo € un array é simile al modo
con cui si dichiara un array. Per esempio, il seguente metodo cerca accetta come
argomento un qualsiasi array d'interi:

public class Esempio {

public int cerca(int[] unArray,int valoreDaCercare) {
for(int i=0@;i<unArray.length; i++)
if(unArray[i]==valoreDaCercare)

return 1i;
return -1;

}
¥

Quando si utilizza come parametro un array, € necessario indicare il tipo base
dell'array, ma non si deve impostare la lunghezza dell'array stesso. E possibile
utilizzare una sintassi alternativa per specificare che un array € un argomento di un
metodo. Tale sintassi & simile a quella alternativa utilizzata in fase di dichiarazione di
un array: € possibile specificare le parentesi quadre dopo il nome dell'array invece
che dopo il tipo. La dichiarazione del precedente metodo diventa quindi:

public int cerca(int unArrayl[],int valoreDaCercare)

Nei metodi gli oggetti vengono passati per riferimento e quindi possono essere
modificati dentro il metodo.

Ad esempio, il seguente metodo eleva al quadrato tutti gli elementi di un array di
interi:

public class Main{
public static void main(String args[]){
int[] a={1,2,3,4,5,6,7,8,9};

quadra(a);
for(int i=0;i<a.length;i++)

95

System.out.println(a[i]);

quadra([] unArray){
(i=1;i<unArray.length;i++)
unArray[i]=()Math.pow(unArray[i],2);

Codice

Operazioni sugli array
La ricerca sequenziale

La ricerca sequenziale o lineare e l'algoritmo di ricerca piu semplice, consiste nel
confrontare ogni elemento dell’array con I'elemento che si sta cercando.

Come cercare i
calzini nella
cassettiera. Si apre |l
cassetto zero e si
vede se ci sono
calzini, se non ci
sono si apre il
cassetto uno e cosi
via fino alla fine.
Quindi il
procedimento e
questo:

96

https://trinket.io/java/f31f4bc85d

Si scorre I'array dall’inizio e si confronta I'elemento dell’array con il valore cercato:

1. se sono uguali si restituisce I'indice

2. altrimenti si prosegue fino alla fine
3. se si arriva alla fine restituisce -1 per segnalare che il valore cercato non &

presente nell’array.

Uno elemento da cercare

QOOOOO

0000000
e

([] unArray, valoreDaCercare) {
(i=0;i<unArray.length; i++)
(unArray[i]==valoreDaCercare)

97

Riduzione

Riduzione significa ridurre l'array in un singolo valore, eseguendo sugli elementi di
un array delle operazioni. Sono esempi di riduzione di un array:

e la somma o il prodotto dei suoi elementi (o solo di alcuni elementi che godono
di una proprieta comune)
e |a media

e il numero degli elementi che godono della stessa proprieta (pari, dispari,
positivi, ecc...)

Esempio: dato un array scrivere una funzione che sommi tutti gli elementi dell'array.

Si risolve come per il calcolo della somma di una sequenza si inizializza a zero la
variabile somma(accumulatore) e ogni volta si aggiunge un elemento dell'array

somma =0

LGN 8 14 6 14 18 10 24 18 26 28
Indice 0|1 2 |3|4[5 /6|7 /8|9

L] 8 14 6 14 18 10 24 18 26 28
IndiceOT‘l 2134|567]8.9

somma+=v[1] somma =22

RUlLalE] 8 14 6 14 18 10 24 18 26 28
Indice 0 |1 /2|1 3/ 4|5|/6]7]18]9

somma+=v|[2] somma =28

Quindi basta scorrere I'array e ogni volta sommare il valore corrispondente all'indice.

public int somma(int[] vettore) {
int somma = ©;
for (int indice = 0; indice < vettore.length; indice++) {

somma += vettore[indice];

}

somma;

}

Per il prodotto si procede allo stesso modo ma inizializzando prodotto al valore
uno.

Ordinamento di un Array
Ordinare un array, significa, mettere gli elementi:

e |n ordine alfabetico se sono stringhe.
e |n ordine di grandezza se sono numeri.

L'ordine puo essere crescente o decrescente.

Esistono diversi algoritmi di ordinamento che adottano strategie diverse. Ma tutti si
basano su due operazioni fondamentali: confronto e scambio.

Ordinamento per sostituzione(exchange sort)

L'exchange sort € un semplice algoritmo di ordinamento efficace per Array di piccole
dimensioni.

Consiste nel confrontare ogni elemento, a partire dal primo, con tutti gli altri:

Confronto

[\

471379 512 9 [13)14 | contenuto

Indice

Array di dimensione 10

Se si incontra un elemento piu piccolo si procede allo scambio tra i due.

99

Confronto

/\,]
4 | 73|79 5 (12| 9 |13|14 | Contenuto

Indice

Array di dimensione 10

Scambio

3|7(4|7|9 5[12]9 |13 /14 | Contenuto

Indice

Array di dimensione 10

Alla fine di tutti i confronti nella prima posizione si trova I'elemento minore.

Si ripete il procedimento per I'elemento nella seconda posizione, nella terza e cosi

via fino all’'ultimo elemento.

100

CONFRONTO

/\

317147 9|5[12] 9 |13|14| CONTENUTO
INDICE

SCAMBIO

A

314 |7 |7 |9]5]|12 9‘13 14\CONTENUTO
INDICE

CONFRONTO

£

3147 |79 5‘12 9‘13 14\CONTENUTO
INDICE

Se n ¢ la dimensione dell’array per inserire il valore minimo nella prima posizione
si hanno:

e n-1 confronti
e al massimo n-1 scambi.

Per il secondo elemento si controllano

e n-2 confronti,
e al massimo n-2 scambi

Per cui, alla fine, si hanno circa:

n(n-1)/2 confronti

un massimo di n(n-1)/2 scambi.

101

Il numero di confronti & costante anche in caso di parziale ordinamento degli
elementi. Il numero di scambi dipende dal parziale ordinamento dell'array.

Per realizzare L' algoritmo si utilizzano due cicli annidati:

1. 1l primo con un indice i che va da 0 a n-2
2. Il secondo con un indice j che va da i+1 a n-1

E all'interno del secondo ciclo un confronto tra vettore[i] e vettore[j] e se si verifica
la condizione si effettua lo scambio tra gli elementi.

public void exchangeSort(int[] v) {
int i, Jj;
i = 0;
int dim = v.length;
while (i < dim - 1) {
jo=1+ 1;
while (j < dim) {
if (v[i] > v[iD {
int tmp = v[i];
vii] = v[]];
v[j] = tmp;
}

T

Oppure usando il ciclo for

public void exchangeSort(int[] v) {
int dim = v.length;

for (int i = 0; 1 < dim - 1; i++)

102

for (int j = 1 + 1; j < dim; j++) {
if (v[i] > v[3i]) {
int tmp = v[i];
vli] = v[]];

v[j] = tmp;

Si puo osservare che essendo l'array un oggetto viene passato per riferimento
quindi la modifica dentro la funzione si ripercuote anche fuori dalla funzione.

Selection Sort

L'algoritmo precedente non e efficace a causa degli elevati scambi. Dato che la
strategia consiste nell'inserire I'elemento minore a sinistra lo si migliora:

1. Prima trovando l'elemento minimo
2. E solo a fine ciclo si fa lo scambio.

12 *—J _1_2_'—"' 12 ‘—J 12 " 11
3 — 3 L 3 | 3 ER
5 5 L 5] L& | T |
13 13 [13 +— 13 Nella posizione 13|
2 2 L2 2 | 5sitrova il minimo —2—
1 + 1 * 1 + 1_| Allafine del ciclo 1
16 16 16 | 16 lo scambiamo =8
4 4 4 | 4 4 con la posizione 0 | 16 |
6 6 6 6 | 6| -
| 10 —
S 10 B 10 10 | 10 10 W
DA PO eone Nella posizione Nella posizione

1 si trova il minimo 2 2T . G
4 si trova il minimo 5 si trova il minimo

Per realizzare tale algoritmo si usano due cicli annidati:
1. Il primo con un indice j che va da 0 a n-2
2. Il secondo con un indice i che va da j+1 a n-1
Prima di entrare nel secondo ciclo si assegna a una variabile k il valore dell'indice j.

Nel ciclo interno si confronta vettore[i] con vettore[k] se si verifica la condizione si
memorizza la posizione i in k.
103

Alla fine del ciclo se j e k sono diversi si effettua lo scambio tra gli elementi.

public void selectionSort(int[] v) {
let dim = v.length;
for (int j = 0; j < dim - 1; j++) {
int k = j;
for (int i = j + 1; 1 < dim; i++) {
if (v[i] < v[k])
k = i;

}

if (k = 3) {
int tmp = v[j];

v[jl = v[k];
vik] = tmp;

La classe Arrays

L'algoritmo selection sort non & l'algoritmo di ordinamento piu efficiente.

Quando l'efficienza € una caratteristica importante, € opportuno utilizzare un
algoritmo piu complesso ma anche piu efficiente. Fortunatamente la classe Arrays
del package java.util, definisce il metodo statico sort. Dato unArray, un array di valori
primitivi od oggetti, l'istruzione:

Arrays.sort(unArray);

ordina gli elementi dell'intero array in senso crescente. Per ordinare la sola porzione
di array compresa fra l'indice inizio e l'indice fine, basta scrivere:

Arrays.sort(unArray, inizio, fine);

La classe Arrays fornisce diverse versioni del metodo per gestire sia array di classi
sia array di tutti i tipi primitivi. Se si vuole ordinare un array di oggetti con Arrays.sort,
I'oggetto deve implementare l'interfaccia Comparable.

104

La classe Arrays contiene molti metodi (tutti statici) per manipolare gli array. Ci sono
metodi per effettuare inizializzazioni, confronti, ricerche e ordinamenti, per
trasformare un array in una lista e per ottenere una stringa dal contenuto dell’array
(in modo da poter stampare il contenuto dell’array senza ricorrere ad un ciclo).

Per un array di numeri interi:

static void fill(int[] a, int val) assegna il valore specificato a ogni elemento
dell’array;

public static boolean equals(int[] a, int[] a2) confronta i due array e restituisce
true se sono uguali; due array sono considerati uguali se contengono gli stessi

elementi nello stesso ordine.

static int binarySearch(int[] a, int key) cerca il valore indicato come key nell’array
usando I'algoritmo di ricerca binaria;

static void sort(int[] a) ordina I'array;

static String toString(int[] a) restituisce una stringa che rappresenta il contenuto
dell’array.

Esistono i metodi corrispondenti per gli altri tipi elementari e per il tipo Object.

Prova il Codice

Esercizi

1. Dato un array scrivere un metodo che sommi tutti gli elementi dell'array.

2. Progettare un programma che permetta d'indicare se uno studente & sufficiente o
meno di una materia basandosi sulla media dei voti della materia. Caricare i voti
della materia in un array.

3. Progettare un programma che converta un numero binario in un numero in base 10.
Il numero binario & rappresentato su N bit, e il valore di N dovra essere fornito
dall’'utente. L'utente dovra inserire le cifre del numero binario un bit alla volta,
partendo dal bit meno significativo (ossia dal bit di peso 2°). Il programma
visualizza il numero in base 10 corrispondente (si utilizzino gli array).

4. Progettare un programma che permetta d'indicare se uno studente € ammesso o
non ammesso alla classe successive in base alla media finale. La media finale dovra
essere calcolata come media delle medie di tutte le materie e, se risultera >= 6

105

http://jdoodle.com/a/LuR

10.

11.

12.

13.

allora lo studente sara ammesso alla classe successiva, altrimenti lo studente non
sara ammesso alla classe successiva.

Progettare un programma che acquisisca da tastiera un vettore d'interi di
dimensione N e calcoli minimo, massimo e media degli elementi.

Si costruiscono tre metodi di riduzione una per il min una per il max e una per la
media.

Dato un vettore di valori numerici, progettare un programma che conti quanti
elementi di un array sono compresi tra un valore minimo e un valore massimo forniti
da tastiera, visualizzando sia il conteggio, sia I'elenco dei valori numerici.

Progettare un programma che permetta di leggere 10 numeri interi e visualizzi la
sequenza memorizzata senza le eventuali ripetizioni. Ad esempio, se nel vettore
fossero memorizzati i valori: 15, 3, 5, 3, 11, 5, 15, 5, 15, 11, il programma dovra
visualizzare i valori 15, 3, 5, 11.

Progettare un programma che memorizzi in un array le ore di studio di uno studente
per ogni giorno del mese. L'algoritmo deve calcolare e visualizzare il numero totale
di ore passate a studiare nel corso del mese, il numero di giorni in cui lo studente
ha studiato per piu ore e il numero di giorni in cui lo studente ha studiato di meno.

In un array di 9 elementi sono memorizzate le presenze mensili degli studenti di una
classe durante I'anno scolastico. Progettare un programma che determini:

a) la media mensile di presenze nel corso dell’intero anno scolastico;

b) il numero totale di presenze nel primo quadrimestre;

c) il mese in cui si e registrato il numero massimo di presenze;

d) il mese in cui si & registrato il numero minimo;

e) la media delle presenze del secondo quadrimestre.

Progettare un algoritmo che permetta d'indovinare in 6 tentativi un codice humerico
composto da sei cifre nellintervallo [100000 - 999999). Il codice numerico deve
essere generato come numero pseudo casuale e deve essere salvato in un array
d'interi, cifra per cifra.

Progettare un algoritmo che preveda il caricamento dei nomi e delle eta degli
studenti della tua classe e visualizzi I'elenco dei nomi e delle eta degli studenti
maggiorenni.

Sviluppare anche i seguenti punti:

a. visualizzazione del nome e I’eta del piu vecchio;

b. visualizzazione del nome e I’eta del del piu giovane;

c. Vvisualizzare la media delle eta;

d. visualizzare l’elenco dei nomi e le eta degli studenti che hanno un’eta

maggiore della media;

e. visualizzare I'elenco dei nomi e le eta che hanno un’eta minore della media.
Progettare un algoritmo che preveda il caricamento dei cognomi e delle eta degli
studenti della tua classe e visualizzi prima l|'elenco dei cognomi degli studenti
maggiorenni e poi lI'elenco dei cognomi degli studenti minorenni.

Progettare un algoritmo che determini in un gruppo di persone quali risultano essere
sottopeso, quali normopeso, quali in sovrappeso e quali obese. Si visualizzino gli
elenchi delle persone che ricadono in ognuno dei gruppi. visualizzino gli elenchi delle

106

14.

15.

persone che ricadono in ognuno dei gruppi.
Si consideri che I'Indice di Massa Corporea (IMC) di una persona si determina con la
seguente formula:
IMC = peso (kg) / altezza? (m?)
e che I'Organizzazione Mondiale della Sanita individua le seguenti quattro categorie:

a) sottopeso: IMC inferiore a 19;

b) normopeso: IMC nell’intervallo [19, 24];

c) sovrappeso: IMC nell'intervallo (24, 30];

d) obeso: IMC superiore a 30.
Uno strumento di misura fornisce un dato ogni minuto nell’arco di un’ora. Per
ovviare a possibili errori si vogliono elaborare i valori rilevati sostituendoli con una
media a tre punti: ogni elemento viene sostituito dalla media di sé stesso,
dell’elemento che lo precede e quello che lo segue. Per i due elementi estremi viene
considerato due volte il valore dell’elemento stesso e una volta il successivo o il
precedente nel caso si tratti rispettivamente del primo o dell’'ultimo elemento.
Progettare un algoritmo in grado di visualizzare i valori finali.

107

Programmazione orientata agli Oggetti

Java é un linguaggio di programmazione orientato agli oggetti (OOP).

La OOP é una metodologia di programmazione che considera il programma come
costituito da oggetti (o istanze) che possono interagire fra loro. il suo stato. | metodi
rappresentano le funzionalita che I'oggetto mette a disposizion

In un programma, un oggetto pud rappresentare un oggetto reale o una sua
astrazione.

Gli oggetti Java come gli oggetti del mondo reale hanno due caratteristiche:

1. Attributi rappresentano gli elementi che caratterizzano I'oggetto, utili per
descrivere le sue proprieta e definirne lo stato. Ad esempio, un oggetto
Persona ha come attributi:

® nNome, cogome Sesso, ecc..
2. Metodi ossia le azioni che pud compiere:
e studia, cammina, parla ecc...

L -

108

La programmazione basata sugli oggetti ha come obiettivo principale la creazione di
nuovi tipi di dati denominati classi. Le classi sono progettate con lo scopo di
modellare in astratto degli oggetti del mondo reale.

Che & I'elemento minimo di un programma Java.

classe

Rappresenta un tipo di dato composta da:

Rappresentano le azioni che pud compiere un oggetto.

Att r' b utl Sono le proprieta che descrivono un oggetto rappresentate tramite variabili e costanti.

Attributi

La programmazione a oggetti permette di:
° rappresentare un problema o delle entita reali attraverso oggetti software
° stabilire le relazioni che intercorrono tra le entita

Gli oggetti di uno stesso tipo condividono lo stesso tipo di dato. Tutti gli oggetti di una
classe hanno gli stessi attributi e lo stesso comportamento.

Quando si definisce una classe, si costruisce il modello di un oggetto.

109

Ad esempio se si vuole creare un oggetto di tipo Moto.
Una moto € piuttosto complessa:
Se si sta creando un videogioco di corse, si ha bisogno di:

Velocita massima, caratteristiche di manovrabilita, colore.
Questo ¢ il modello di una moto per il gioco.

E i metodi accellera() frena ecc..

Se si realizza un programma per un negozio di moto le
informazioni sono diverse:

Ad esempio targa anno 'immatricolazione prezzo
ecc...

e i metodi: vendi() immatricola() ecc...

Il modello é diverso.

Per costruire un oggetto di tipo moto si costruisce una classe con:.

Attributi: il colore, la marca, la velocita, se é accesa.

Come si vede, queste caratteristiche possono descrivere le proprieta fisiche
delloggetto, come il colore. Possono anche indicare lo stato delloggetto in un

determinato momento, possiamo sapere se la moto € accesa o spenta.

Metodi. Si muove, Accelera, Frena, Si spegne

110

Nome classe: Moto
Attributi(Dati):
colore

marca

velocita

targa

accesa

Metodi (azioni):
accelera
Come:
girando la manopola in alto
decelera
Come:
girando la manopola in basso

Classe moto, descrive una
moto generica

Una classe specifica gli attributi, o dati, degli oggetti della classe. La definizione della
classe Moto indica che un oggetto di tale classe ha cinque attributi:

una stringa che indica il colore

un intero che indica la velocita
una stringa che indica la targa

una Stringa indica la marca della moto

un valore booleano che indica se il motore € acceso

La definizione di una classe non specifica il valore degli attributi, questi sono specifici
dei singoli oggetti; la classe specifica solamente il tipo (di dato) di questi attributi.

Una classe, inoltre, specifica le azioni
oggetti e come queste azioni vengono svolte.

che possono essere svolte dagli

Per esempio, la classe Moto specifica quattro azioni:

accelera
decelera
accendi
spegni

Queste azioni sono descritte all'interno della classe per mezzo di metodi.

111

Tutti gli oggetti di una classe hanno gli stessi metodi. Le definizioni dei metodi
fanno parte della classe, essi descrivono il modo in cui gli oggetti svolgono le
azioni.

La classe pud essere immaginata come uno stampo dal quale vengono creati gli
oggetti, tutti con gli stessi attributi e gli stessi metodi, un oggetto puo esistere solo se
esiste la relativa classe che ne descrive le caratteristiche e le funzionalita.

Istanze

Gli oggetti di questa classe rappresentano moto specifiche. Per creare oggetti si
deve istanziare la classe, le varie istanze sono completamente indipendenti I'una
dall'altra e quindi se si creano tre oggetti di tipo "Moto" si ottengono tre Moto(
oggetti) diverse.

Oggetto:moto1
colore mero
marca honda
velocita 0
targa Dr34567
accesa false

- Oggetto:moto2
> y colore verde

3 y marca ktm

velocita 0

| ' & Al targa AC43256
Classe moto, descrive %8 accesa true
una moto generica h’{; :

Oggetto:moto2

colore nero

marca harley davidson
velocita 50

targa BC43116

Oggetti rappresentano
T accesa true

by

si dice che l'oggetto moto1 & un’istanza della classe Moto. Allo stesso modo
'oggetto moto2 & un’istanza della classe Moto. Quindi la stessa classe pud generare
piu istanze che differiscono per il valore assunto dai suoi attributi, ma tutte possono
utilizzare i metodi della classe.

La struttura base della dichiarazione di una classe in Java & la seguente:

112

class NomeClasse{

La parola chiave class serve per iniziare la dichiarazione di una classe ed & seguita
dal nome della classe. Per convenzione, i nomi delle classi si indicano con la lettera
iniziale maiuscola.

Tra le parentesi graffe si inserisce tutto il contenuto della classe, costituito dagli

attributi e dai metodi. Naturalmente possono esistere classi formate da soli attributi
oppure da soli metodi.

Variabili d'istanza

Le variabili d'istanza sono quelle variabile che sono definite all'interno di una
classe(attributi), ma fuori dai metodi della classe stessa.

La sintassi per la dichiarazione di una variabile é la seguente:
[modificatori] tipo nome [= inizializzazione];
dove:

Modificatori: parole chiavi di Java che consentono di definire il livello di accesso
degli attributi o dei metodi della classe (public, private, protected,final).

113

Specifica che I'attributo o il metodo & accessibile in qualunque blocco di codice

pUinc anche esterno alla classe

private Specifica che I'attributo o il metodo & accessibile soltanto all'interno della classe

Specifica che I'attributo o | metodo & accessibile all'interno della classe ed
prOtGCted all'interno delle classi che ereditano dalla nostra classe

nessun valore (default): Specifica che I'attributo o il metodo & accessibile solo
all'interno della classe ed all'interno delle altre classi che fanno parte dello stesso

MODIFICATORE STESSA STESSO SOTTOCLASSE OVUNQUE
CLASSE PACKAGE

public SI S1 b | A |

protected SI Sl SI NO
nessun modilicatore Sl Sl NO NO
private Sl NO NO NO

tipo: Data type della variabile.

nome: il nome della variabile

Gli attributi della la classe moto sono:

1. una Stringa indica la marca della moto
2. una stringa che indica la targa.

3. una stringa che indica il colore

4. un numero intero che indichi i cavalli

5. un valore booleano che indica se il motore & acceso o spento.

114

class Moto{ <

String marca;
String targa;
String colore;
int cavalli;
boolean acceso;

Nome Classe

<t

Attributi

Variabili di istanza il lo valore
deipente dall'oggetto

//metodi <
}

Metodi(azioni)

Per creare un oggetto si deve istanziare la classe:

Per prima cosa si definisce una variabile usando come data Type il nome della

classe.

-

Moto ktm;

\

NomeClasse nomeVariabile

~

)

Questa istruzione dichiara che la variabile ktm & un riferimento (reference) a un

oggetto della classe Moto.

Usando l'operatore new si crea il nuovo oggetto.

115

ktm= new Moto();

new Moto ();

crea e inizializza un nuovo oggetto il cui indirizzo viene quindi assegnato a ktm.

B

Moto@7852e922 . 9

Moto

[newbioo) |
Apri nell'Editor
Compila
Ispeziona
Elimina
Duplicate...

Convert to Stride

Crea la classe di test

Le variabili d'istanza assumono i valori di default perché non gli & stato assegnato
nessun valore.

116

Variabile Valore

byte 0

short 0

int 0

long OL

float 0.0f

double 0.0d

char ‘\u0000"' (NULL)
boolean false

Ogni tipo reference null

Quando si crea un oggetto java esegue il metodo costruttore. Se questo non &
definito come nel nostro caso java crea un costruttore vuoto.

Costruttore

Quando si crea un oggetto di una classe utilizzando I'operatore new, si invoca un
particolare tipo di metodo chiamato costruttore, il quale deve avere lo stesso
nome della classe, e pud avere dei parametri che utilizzera per inizializzare, le
variabili d'istanza se non inseriamo un costruttore java ne inserisce uno di default
vuoto.

Quando si definisce un costruttore, non si specifica nessun tipo di ritorno. |
costruttori forniscono un valore a tutte le variabili d'istanza, anche se non hanno un
parametro per ognuna di esse. Se il costruttore non inizializza una particolare
variabile d'istanza, lo fara Java, assegnando un valore di default. In ogni modo,
quando si definisce un costruttore, € una normale pratica in programmazione
assegnare esplicitamente un valore a tutte le variabili d'istanza.

La classe moto con il costruttore:

117

class Moto{ ‘<1 N .
ame Llasse

String marca;

String targa; T
String colore; R ribut .
int cavalli; Vmwaduﬁﬁﬁ?ﬂc%:momdemeMe
boolean acceso; alloggetto

Moto(String marca,String targa,String colore, int cavalli, boolean acceso){
this.marca=marca;
this.targa=targa;
this.colore=colore;
this.cavalli=cavalli; Costruttore
this.acceso=acceso;

}

Il costruttore possiede i parametri d'input: String marca, String targa, String colore,
int cavalli, boolean acceso (indicati tra le parentesi dopo il nome)

e il corpo del costruttore imposta il valori degli attributi assegnandogli i valori dei
parametri d'ingresso.

e | parametri d'ingresso hanno lo stesso nome degli attributi.

e Per risolvere il conflitto di nomi tra gli attributi della classe Moto e i parametri
d'ingresso viene utilizzata la parola chiave this.

serve per referenziare gli attributi o i metodi della classe nel
odice scritto all'interno della classe stessa (in pratica this e un

riferimento alla classe stessa all’interno della quale si sta
scrivendo il codice)

Quando si invoca il costruttore il compilatore alloca una quantita di memoria idonea
a contenere l'oggetto e ritorna nella variabile ktm il suo riferimento. Si pu6é dunque
dire che il processo di creazione di un oggetto si attua in due passaggi:

1. con una dichiarazione dove si dice che una variabile € di un certo tipo e che puo
contenere un oggetto di quel tipo;

2. con una definizione dove si alloca uno spazio di memoria che contiene I'oggetto
creato (new) e il cui riferimento viene salvato nella variabile.

Un oggetto puo avere al proprio interno piu variabili, le sue variabili d'istanza.

118

Moto enduro, enduro= new Moto("KTM","RM1234", “giallo”); Assegna un
Assegna a enduro un frammento di memoria a un oggetto della classe Moto,
area di memoria memoria sufficiente a contenere I'oggetto.

Area di memoria ; l'indirizzo dell'oggetto viene
7852e922
posto nell'area di memoria =

assegnata a enduro.

Il frammento di
memoria assegnato a
enduro.marca;
enduro.targa;
enduro.colore

i ha indirizzo 7852e922

L'oggetto km diventa:

ktm= new Moto("ktm""DR354" "3erde" 30,true);

colore Verde
cavalli 30
accesa true

marca ktm
m ’ targa DR354

w L] BlueJ: Esempio2-copy ktm

new Moto(String marca, String targa, String colore, int cavalli, boolean accesa)

Apri nell'Editor
Compila
Ispeziona
Elimina
Duplicate... ktm : Moto

Convert to Stride

Crea la classe di test

119

Ricapitolando:

1 Se non viene creato esplicitamente un costruttore, il compilatore
provvedera in autonomia a crearne uno vuoto, definito costruttore di default.

2 Il costruttore ha lo scopo d'inizializzare le variabili d'istanza dell’'oggetto
creato, al fine di porle in uno stato consistente.

3 Se non si esplicita un valore da dare alle variabili d'istanza, il compilatore
provvedera automaticamente a inizializzare con i valori di default.

Inoltre i costruttori possono essere sovraccaricati, ovvero si possono scrivere piu
costruttori con parametri differenti per tipo, per numero e per posizione. Cid
consente di creare I'oggetto passando una varieta d'inizializzatori; a seconda del
numero, tipo e ordine degli argomenti, il compilatore invochera il costruttore corretto
(con lo stesso numero, tipo e ordine dei parametri). L'utilizzo delle varie forme di
costruttori ci permette d'introdurre un concetto tipico della programmazione object
oriented: 'overloading di metodi. Si parla di overloading di metodi quando esistono
nella stessa classe metodi che hanno lo stesso nome ma un differente numero di
parametri.

Nom\i(:tlasse 4——|pub1ic class Moto {
Moto

private int cilindrata;
private String modello;
private String colore;
private String targa = "da immatricolare”;
private boolean accesa;

Attributi <

Moto(String modello, String colore, int cilindrata) {
this.modello = modello;
this.colore = colore;
this.ecilindrata = ecilindrata;

Costruttori }

Moto(String targa, String modelleo, String colore, int ecilindrata) {
this.targa = targa;
this.modello = modello;
this.colore = colore;
this.cilindrata = cilindrata;

<

Moto immatricolata
eda Immatricolare

Solitamente tutte le variabili d'istanza sono dichiarate private.

Per creare oggetti di tipo Moto creiamo una classe Main con il metodo static main.

120

zlass Main {
public static void main(String[] args) {

Moto honda=new Moto("Hornet", "nero”,900); <|{——— Moto da immatricolare
System.out.println(honda);//out in java

Moto ktm=new Mbto{"DR354","XRS","Verde”,250.q

; e Moto immatricolata
System.out.println(honda);//out in java

Codice

Eseguendo il programma precedente si ottiene come output:

Moto@2a139a55

Moto@15db9g742

| metodi:
print(oggetto) e printin(oggetto)

stampano lo stato dell'oggetto trasformandolo in una stringa. Questo succede
perché viene richiamato il metodo:

toString()

Della classe Object da cui tutte le classi Java ereditano.
Il metodo toString() ereditato, come rappresentazione dell'oggetto, restituisce una
stringa con il nome della classe a cui appartiene l'oggetto seguito dall'indirizzo

dell'oggetto in memoria.

Per ottenere una stringa piu appropriata bisogna ridefinire il metodo.

Dichiarazione e implementazioni dei metodi

metodo toString

La dichiarazione o firma di un metodo €& cosi composta:
121

https://replit.com/@RolandoSucco/CiaoMondo-1

Per riscrivere il metodo toString della classe Object

La firma é:

public String toSting()

ovvero stiamo dichiarando che:

e ¢ public, quindi accessibile in qualunque altra parte del codice (anche
all'esterno della classe Moto)

e il metodo deve ritornare un valore di tipo String (parametro di output del
metodo). Il codice del metodo deve terminare con un'istruzione return che
restituisca al chiamante un valore di tipo String

e il nome del metodo é toSting

e (): il metodo non ha parametri d'ingresso. Le parentesi tonde sono infatti vuote

Dopo la firma del metodo segue il corpo del metodo delimitato dalle parentesi graffe:

return "Moto: targa: "+targa +" modello: "+modello+" colore:
"+colore+" cilindrata: "+cilindrata;

Il metodo esegue una sola istruzione: restituisce lo stato dell'oggetto.

Nota:

Non esiste una forma "standard" per la rappresentazione di un oggetto. Dipende
molto dal significato della classe, dal suo contenuto e soprattutto da dove si intende

usare la rappresentazione testuale.

La classe moto con il metodo toString.

122

Nome Classe < :
——-bnbllc class Moto
Maoto {

private int cilindrata;
private String modello;
Attributi <}—— |private String colore;
private String targa = "da immatricolare";

Moto(String modello, String colore, int cilindrata) {
this.modello = modello;

; this.colore = colore;

Costruttori this.cilindrata = cilindrata;

}
Moto(String targa, String modello, String colore, int cilindrata) {
this.targa = targa;
this.modello = modello;
this.colore = colore;
this.cilindrata = cilindrata;

Moto T
immatricolata

eda
Immatricolare

}

public String toString() {
M;LO_dO M return "Moto:\ntarga: " + targa + "\nmodello: " + modello +
tosiing < "\n colore: " + colore + "\ncilindrata: " + cilindrata;

!

Codice

Metodo set

L'oggetto Moto costruito € un oggetto immutabile. Una volta creato non puo essere
modificato in nessun modo. Per poterlo modificare si devono scrivere dei metodi
chiamati set la cui firma é:

public void setAttributo(Tipo attributo)

Ad esempio:

public void setTarga(String targa) {

this.targa= targa;
}

possiamo notare:

o il tipo di ritorno del metodo void. Questa & la parola chiave utilizzata in Java per
indicare che il metodo non ritorna nulla (il metodo infatti serve per impostare un
nuovo valore per la variabile colore, ma non deve restituire nulla)

o Il nome formato dalla parola set seguito dal nome dell'attributo in maiuscolo
(convenzione java):

123

https://replit.com/@RolandoSucco/CiaoMondo#Main.java

o il metodo possiede un parametro di ingresso (o di input): String targa (indicato tra
le parentesi dopo il nome del metodo)

o il corpo del metodo imposta il valore dell'attributo targa assegnandogli il valore del
parametro di ingresso. Da notare che il parametro di ingresso si chiama anch'esso
targa. Per risolvere il conflitto di nomi tra I'attributo della classe Moto ed il parametro
di ingresso del metodo viene utilizzata la parola chiave this.

serve per referenziare gli attributi o | metodi delia classe nel codice scritto

all’interno della classe stessa (in pratica this @ un riferimento alla classe
stessa all'interno della quale stiamo scrivendo il codice)

In modo analogo si creano metodi set per tutti gli attributi che si possono modificare
della Classe.

Nom; Cllasse —public class Moto { |
oto

private int cilindrata;
private String modello;

Attributi <t private String colore;
private String targa = "da immatricolare";
Moto(String modello, String colore, int cilindrata) {
this.modello = modello;
. this.colore = colore;
t : s o
ostruthor! this.cilindrata = cilindrata;
Moto +— 1}) , .) o
: ; Moto(String targa, String modello, String colore, int cilindrata) ({
immatricolata :
eda this.targa = targa;

this.modello = modello;
this.colore = colore;
this.cilindrata = cilindrata;

Immatricolare

}

metodo public void setTarga(String targa) {
setTarga <t ths.targa = targa;

}

public String toString() {
Metodo 1 return "Moto:\n targa: " + targa + "\n modello: " +
toString modello + "\n colore: " + colore + "\n cilindrata: " + cilindrata;
}
}

Il Dot-Operator

Per accedere ai metodi o agli attributi di una classe java mette a disposizione il Il
dot-Operator

124

object.member

class Main {
public static void main(String[] args) {
Moto honda = new Moto("Hornet", "nero", 900);
System.out.println(honda);// out in java f——0

Moto da immatricolare

System.out.println(" Immatricoliamo la moto e inseriamo la targa");
honda.setTarga("ad456");

g Inseriamo latarga

System.out.println(honda);
}
}

Codice

Metodo get

Per ottenere i dati contenuti in una variabile d'istanza si usa il metodo get la cui firma

by

e.

public Tipo getAttributo()

Ad esempio:

possiamo notare:

o Il tipo di ritorno ¢ il tipo dell'attributo di cui si vuole sapere il valore. Nel nostro caso
String

e |l nome é formato dalla parola get seguita dal nome dell'attributo in maiuscolo
(convenzione java).

e |l metodo non possiede un parametro d'ingresso (o di input).

e |l corpo del metodo contiene il return dell'attributo.

125

https://replit.com/@RolandoSucco/Moto#Main.java

In modo analogo si creano i metodi get per tutti gli attributi della Classe.

Normalmente tutti i metodi sono public. Se un metodo deve essere usato solo dagli
altri metodi della sua classe, allora dovrebbe essere reso privato.Tutte le variabili
d'istanza dovrebbero essere dichiarate private. In questo modo si costringe chi usa
la classe ad accedere alle variabili d'istanza solo attraverso i metodi della classe.
Questo permette alla classe di controllare tutte le attivita di lettura e scrittura dei
valori delle variabili d'istanza.

Scope

La portata e la durata delle variabili

Java consente di dichiarare le variabili all'interno di qualsiasi blocco(un blocco inizia
con una parentesi graffa aperta e termina con una parentesi graffa chiusa) che
definisce un ambito. Un ambito determina quali oggetti sono visibili ad altre parti del
programma.

In Java, i due gli ambiti principali sono quelli:

1. Definiti da un metodo.
2. Definiti da una classe.

Le variabili dichiarate all'interno di un ambito non sono visibili (cioe, accessibili) al
codice definito all'esterno di tale ambito. Quindi, quando si dichiara una variabile
all'interno di un ambito, si localizza quella variabile proteggendola da accessi e/o
modifiche non autorizzate. Una variabile dichiarata all'interno di un blocco é
chiamata a variabile locale.

= Variabili locali: Sono create quando un metodo viene chiamato e cancellate
dalla memoria quando il metodo termina.

126

pac
pub
{
pr
pu
va

kage com.sistemi.sintassi;
lic class variabili

ivate statie String classe ="Ciao io sono una variabile di Classe";
blic String istanza="Ciao io sono una variabile di Istanza";
riabili(){

visualizza();

}

public static void main(String[] args)

{

String 1locale = "Ciao io scno una variabile lLocale";
// stampa gualcosa..

}
}

System.out.println(locale);
System.out.println(classe);
variabili a=new variabili();

}

public wvoid wvisualizeza(){

System.out.println(istanza);

La dichiarazione della variabile pud avvenire ovunque all’interno di un blocco di
codice, il quale € rappresentato da un gruppo d'istruzioni poste tra le parentesi graffe
di apertura { e chiusura }, e dopo tale dichiarazione la variabile medesima pud
essere utilizzata. Se si creano blocchi annidati, la variabile del blocco piu esterno é

visibile all’'interno del blocco interno, ma non vale il contrario.

12 public class BlocchiAnnidati {

13

14 B public static void main(String[]) args) {
15 int x = 20;

16 if (x < 20) {

17 int y = 11;

18 System.out.printin(+ X);
19 }

& System.out.printlni(+ ¥);

21 }

22 }

cannot find symbaol
symbol: variabley
location: class BlocchiAnnidati

(Alt-Enter shows hints)

Parametri formali

Sono quelle variabili che vengono dichiarate all’interno delle parentesi tonde di un
determinato metodo.

127

package com.sistemi.sintassi;
public class variabili
{
private static String classe ="Ciao io sono una variabile di Classe";
public String istanza="Ciao io sono una variabile di Istanza";
variabili(){
visualizza();
} .
public static void main(String[] args) Parametri
{

String locale = "Ciaoc io sono una variabile Locale";
// stampa qualcosa..
System.out.println(locale);
System.out.println(classe);
variabili a=new wvariabili();
}
public void visualizza(){
System.out.println(istanza);
}
}

Variabili di classe (static)

Le variabili di classe infine, comunemente dette anche static field o campi statici,
sono variabili d'istanza ma nella loro definizione viene usata la keyword ‘static’.

static int v = 6;

Una variabile di classe & una variabile visibile da tutte le istanze di quell’oggetto e il
suo valore non cambia da istanza a istanza, per questo appartiene trasversalmente
a tutta la classe.

public class Studentef
Cliss Studente public String nome;
public int eta;
public static String codiceScuola="a34"
/fmetodi
I
nome= Sara - nome= Sar
TS) nome= Mario n t2=16 o
e i e eta=16;
codiceScuola=a34 eta=15; di s
codiceScuola=a34 II codiceScuola=a34
a8

128

Codice

e static applicata ad un attributo: tutti gli oggetti

istanziati condividono lo stesso attributo.

della classe che vengono

Per accedere a un attributo static della classe si usa la sintassi
nomeClasse.nomeAttributo.
° static applicata a un metodo: indica che il metodo & accessibile

utilizzando direttamente il nome della classe e non necessita di un oggetto
istanziato. La sintassi sara quindi nomeClasse.nomeMetodo

I static data member non-static data member
static methods
Yes No
e ok oo
non-static
methods Yes Ves

E possibile definire un blocco static che viene eseguito una sola volta (quando la
classe viene portata in memoria) in tale blocco si inseriscono di solito delle
operazioni per inizializzare le variabili static.

class moto {

static int numeroDiMoto:

static{
numeroDiMoto=1;

}

Esempio di Codice

129

https://www.jdoodle.com/a/uDf
https://repl.it/@RolandoSucco/uso-delle-variabili-statiche

Un'osservazione da fare riguarda la possibilita di conflitti di nome su di una variabile
che ne alterano lo scope. Quando una variabile locale ed una globale hanno lo
stesso nome (e sono contemporaneamente utilizzabili anche in base ai privilegi
determinati dal qualificatore di accesso), la variabile locale ha sempre priorita su
quella globale.
Esempio di conflitto di nome nello scope di una variabile

public class Scope {
static int numero=10;

public static void main(String[] args) {

stampaNumerol);
stampaNumero2();

}

public static void stampaNumero() {

int numero = 5;

System.out.println(

¥

public static void stampaNumero2() {

System.out.printin("nN

}
}

.l)l/

Output - JavaApplication28 (run)

Numero = 5
Numero=1@
BUILD SUCCESSFUL (total time:

-

secon

ds)

+ numero);

In esecuzione dal metodo stampaNumero() otteniamo la
stampa della stringa "Numero= 5, perché la variabile
locale numero viene ridefinita col valore 5 ed ha
prioritd sulla variabile globale numera. Invece il
metodo stampaNumero2() dacome output "Numero=
10% in guanto in guesto metodo la variabile numero non
viene ridefinita e pertanto viene utilizzata la variabile
globale numero.

130

Il paradigma della OOP

La programmazione a oggetti si basa su tre paradigmi fondamentali:

1. 1. Incapsulamento;
2. 2. Ereditarieta;
3. 3. Polimorfismo.

Incapsulamento

Secondo il paradigma della OOP, l'incapsulamento prevede che tutto quello che
riguarda un oggetto deve essere necessariamente definito al suo interno,
I'utilizzatore dell’oggetto dovrebbe accedere agli attributi unicamente attraverso i
metodi, evitando di accedervi direttamente.

Con [lincapsulamento si ottiene [information hiding, ovvero il processo di
nascondere il piu possibile i dettagli d'implementazione al fine di ridurre la
complessita di un oggetto. Il programmatore pud quindi focalizzarsi sul nuovo
oggetto senza preoccuparsi dei dettagli di implementazione, avendo dunque a che
fare con classi piu semplici.

Un oggetto dotato di buon incapsulamento possiede un’alta information hiding,
poiché espone all’esterno pochi elementi. Quando un altro oggetto, nel programma,
dovra fare uso delloggetto ben incapsulato, utilizzera quei pochi elementi visibili
dall’esterno.

Inoltre, una classe nasconde sempre I'implementazione dei propri metodi, ovvero |l
codice che viene eseguito all'interno dei metodi. L'unica cosa visibile da parte del
codice esterno alla classe € la firma del metodo. Potremmo dire che una classe
mostra all’esterno “cosa fa, ma non come lo fa”.

. Z. |

131

Chiunque puo alzare la cornetta, comporre un numero telefonico e conversare con
un’altra persona, ma pochi conoscono la sequenza dei processi scatenati da queste
poche, semplici azioni. Evidentemente, per utilizzare il telefono, basta conoscere la
sua interfaccia pubblica (costituita dalla cornetta e dai tasti), non la sua

Implementazione interna.

A livello d'implementazione cio si traduce semplicemente nel dichiarare privati gli
attributi di una classe e quindi inaccessibili fuori dalla classe stessa. L'accesso ai dati
potra essere fornito da un’interfaccia pubblica costituita da metodi dichiarati public.

class Moto {

static private int numeroMoto=4;

private boolean motoreacceso;
private String marca; ‘<‘l

private String colore;
private String targa;

public Moto(String marca, String colore) {
this.marca=marca;
this.colore=colore;
numeroMoto++;

}

public void setTarga(String targa) {

this.targa=targa; /"-
) &

void accendi() {
if (motoreacceso == true) {

I iabili_(cioé gli_attributi) | isibilita |

private pertanto sono visibili solo internamente.

Per interagire con ['atiributo motoreAcceso di
un'istanza della classe Moto & possibile
utilizzare il metodo accendi().

System.out.println("Il motore e' gia' acceso™);

} else {
motoreaccese = true;

System.out.println{"0Ora il motore e' acceso");

Nulla vieta di utilizzare private, anche come modificatore di metodi, ottenendo cosi
un incapsulamento funzionale. Un metodo privato infatti, potra essere invocato solo
da un metodo definito nella stessa classe, che potrebbe a sua volta essere

dichiarato pubblico.

132

Ereditarieta

Il concetto di ereditarieta €& ispirato a qualcosa che esiste nella realta. Nel mondo
reale noi classifichiamo tutto con classi e sottoclassi. Per esempio un cane € un
animale, una moto & un veicolo, la chitarra & uno strumento musicale.

Questo permette di affermare che un certo concetto € un concetto particolare di un
concetto piu generale.

Questa relazione pud essere letta in due modi dal generale al particolare e
viceversa.

133

Specializzazione

Super Classe

Kihd-of
Classe

Generalizzazione

Questa € una relazione tra classi e non tra istanze.

Perché ad esempio tutti i cani sono particolari tipi di Animali, ma non tutti gli animali
sono cani.

La generalizzazione quando viene implementata in un linguaggio a oggetti porta al
concetto di ereditarieta. Consideriamo due classi ClasseUno e ClasseDue ognuna
con un suo attributo e un suo metodo:

ClasseUno ClasseDue

AttributoDue
MetodoDue()

AttributoUno
MetodoUno()

Se ClasseDue € una sotto classe di ClasseUno allora eredita i metodi e gli attributi
di ClasseUno.

134

ClasseUno

AttributoUno
MetodoUno()

Ereditarieta

ClasseDue
AttributoUno

MetodoUnoO
AttributoDue
MetodoDue()

Il risultato immediato € la possibilita di ereditare codice gia scritto, e quindi gestire
insiemi di classi collettivamente, giacché accomunate da alcune caratteristiche.
L'ereditarieta, permette di creare delle gerarchie di classi.

velcoli

zzzzzz

F,{/,/:/,'/// Una classe Java pud avere un
qualsiasi numero di classi figlie (e
Mm nipoti e cosi via) ma pud essere
Bici A figlia di una sola classe genitore,
7 //// V7 2 f/{/ ovvero in Java non & consentita
4 ﬁl I'ereditarieta multipla.
- A

Le frecce indicano la relazione. In questo caso la classe Taxi € una sottoclasse della

classe Auto, che & a sua volta una sottoclasse della classe Veicoli. La classe Taxi,
135

eredita tutti i membri pubblici e protetti sia della classe Auto sia della classe Veicoli.
Infine, ricordiamo che tutte le classi Java derivano implicitamente dalla classe
Object.

La parola chiave extends

In Java per indicare che una classe B eredita da una classe si usa la parola chiave
extends, proprio perché B estende A. La sintassi é:

class SottoClasse extends SuperClasse {
//corpo della classe

}

Vediamo un semplice esempio di come i membri di una classe vengono ereditati da
una sotto classe. Consideriamo due semplici classi:

Class SuperClasse{ |Class SottoClasse extends SuperClasse{
String nome;
int numero;

}

Scriviamo una classe di test dove facciamo un'istanza della sottoclasse.

class Main {
public static void main(String[] args) {
SottoClasse sc= new SottoClasse();
sc.nome="prova ereditarieta";
Sc.numero=1;
System.out.println(sc.nome+" numero "+sc.numero);

136

Output:

prova ereditarieta numero 1

Si pud notare che usiamo un oggetto di SottoClasse per accedere agli attributi
d'istanza di SuperClasse.

Codice

Nel caso precedente perd non abbiamo reso privati i due attributi
contravvenendo al principio dell'incapsulamento. Se provate a rendere privati i due
attributi otterrete un errore di compilazione, questo perché:

Un oggetto della sottoclasse non deve accedere agli attributi privati della super
Classe.

Oggetto SupercCiasse
Della

SottoClasse

Attributo privato

Per poter utilizzare questi attributi si scrive un metodo pubblico nella superclasse.

137

https://repl.it/@RolandoSucco/Prova-ereditarieta

Class SuperClasse{
String nome;

int numero;

public void vediAttributi(){

System.out.printin(nome+” “+numero;

}
}

Se si esegue un test si vede che siccome le variabili non sono state inizializzate
restituiscono il valore di default(null e zero). Questo problema lo si risolve con i
costruttori.

class Main {
public static void main(String[] args) {
SottoClasse sc= new SottoClasse();
sc.vistaAttributi();

Ereditarieta e costruttori

Il costruttore € un metodo speciale, che possiede le seguenti proprieta:
1 ha lo stesso nome della classe;
2 non ha tipo di ritorno;

3 e chiamato automaticamente (e solamente) ogni volta che viene
istanziato un oggetto della classe;

4 e presente in ogni classe;

138

5 I compilatore introduce il “costruttore di default”, nel caso |l
programmatore non gliene abbia fornito uno in maniera esplicita;

Un’altra proprieta del costruttore € che nel caso di ereditarieta:

Il costruttore, della sottoclasse come prima istruzione,
invoca sempre il costruttore della superclasse.

Quindi i costruttori vengono eseguiti in modo verticale.

Ad Esempio consideriamo le classi Moto e Veicoli cosi strutturate:

public class Veicoli { public class Moto extends Veicoli{
public Veicoli() public Moto()
{ System.out.printin("Costruttore Veicoli"); { System.out.printin("Costruttore di una
} moto”);
} }
}

Se creiamo un oggetto Moto a= new Moto(); L'output risultante sara:

Costruttore Veicoli

Costruttore di una moto

Il costruttore Moto() ha prima invocato il costruttore Veicoli() (superclasse) e poi &
stato eseguito.

La parola chiave super

La parola chiave super & utilizzata in Java per riferirsi agli elementi della
superclasse. In ogni costruttore, &€ sempre presente una chiamata al costruttore della
superclasse tramite il reference super(). Per esempio nella classe Moto il costruttore
verra modificato dal compilatore nel seguente modo:

public class Moto extends Veicoli{
public Moto()

{

super();

139

System.out.println("Costruttore di una moto");

¥

¥

Supponiamo ora di dotare la superclasse Veicoli di un costruttore che imposti la
variabile colore.

public class Veicoli {
public Veicoli (String colore) {
this.colore = colore;

}
}

Questa classe compilera, ma Moto non compilera piu:

Veicoli

Messaggio

Moto _ constructor Veicoli in class Veicoli cannot be applied to given types;

TS 7 ; required: java.lang.5tring
£! found: no arguments
[

reason: actual and formal argument lists differ in length

L'operatore non puod essere usato con questo tipo.
Stai sbagliando il tipo, oppure stai sbagliando
I'operatore.

Questo succede perché, se un costruttore viene aggiunto esplicitamente, nessun
altro costruttore di default viene implicitamente inserito. Quindi Iistruzione super()
inserita implicitamente nella sottoclasse Moto prova a chiamare il costruttore della
superclasse senza parametri. Per risolvere il problema bisogna modificare il
costruttore di Moto in modo tale da fargli chiamare il costruttore della superclasse
Veicoli che prende in input il colore:

public class Moto extends Veicoli {

public Moto(String colore){

140

super(colore);
System.out.println("Costruttore di una moto");

¥
}

La chiamata al costruttore della superclasse mediante super() deve essere la prima
istruzione di un costruttore e non potra essere inserita all'interno di un metodo che
non sia un costruttore.

codice
Come per l'operatore this, anche super, viene utilizzato sia per le variabili :

super.variabile

che per invocare altri metodi

super.metodo()

E' possibile riferirsi solo agli elementi contenuti nella superclasse, non & consentito
pertanto utilizzare super.super. Se una super classe eredita degli elementi visibili,
questi diventano degli elementi a tutti gli effetti della classe, di conseguenza si
potranno utilizzare direttamente con un solo super.

Gerarchie di classi

Una sottoclasse pud essere superclasse di un proprio discendente, cosi si forma
una gerarchia di classi:

Upcasting, downcasting

Upcasting consente a un oggetto di un tipo di sottoclasse di essere trattato come un

oggetto di qualsiasi tipo di superclasse. L' Upcasting viene eseguito
141

https://repl.it/@RolandoSucco/Uso-di-Super

automaticamente, mentre il downcasting deve essere fatto manualmente dal
programmatore. Usiamo la gerarchia Veicoli per spiegare come funziona la gerarchia
delle classi.

+

JAN

Moto

Auto

Bici

Taxi

¥ :
downcasting

Auto e Moto sono entrambi Veicoli, quindi per I'ereditarieta, ha tutte le proprieta dei
suoi antenati. Il che significa logicamente:

Se i veicoli hanno un proprietario allora anche le auto hanno un proprietario.

Cio significa che non abbiamo bisogno di scrivere per ogni veicolo possibile, che ha
un proprietario. Lo si scrive una volta, e ogni veicolo lo ottiene attraverso
I'ereditarieta.

Col casting non si sta modificando I'oggetto, lo si sta etichettando in modo
diverso. Se si crea un Auto e la si assegna a un Veicolo, l'oggetto € ancora un'auto,
ma e trattato come qualsiasi altro veicolo e le sue proprieta sono nascoste fino a
quando non vengono assegnate a un auto.

Diamo un'occhiata al codice dell'oggetto prima e dopo 'upcasting:

Auto miaAuto = new Auto();

142

Veicolo un Veicolo;
unVeicolo = miaAuto;
System.out.println(miaAuto);

Auto@4aa298b7

. . Auto@400298b7
System.out.println(unVeicolo);

Auto dopo l'upcasting é esattamente la stessa Auto, non & diventata un
Veicolo, é stato solo etichettato comeVeicolo. Questo &€ permesso, perché Auto é
un Veicolo. Anche se sono entrambi dei Veicoli, Auto non pud essere assegnato a
una Moto.

Veicolo | v | Ret b gobject(Veicolo)
Auto | A] Ref b g Object(Auto)

E possibile assegnare a una variabile della superclasse (Veicolo) un oggetto della
sottoclasse(Auto)

~nuto |] et B Objectiauto)

se proviamo a fare l'inverso otteniamo un errore:

143

I

non € possibile assegnare a una variabile della sotto classe (Auto) un oggetto della
super classe (Veicolo)

Main. Java:25: error: incompatible types: Veicolo cannot be
converted to Auto miaAuto-unVeicolo;

I downcasting si deve sempre fare manualmente:

Auto miaAuto = new Auto();
Veicolo unVeicolo = miaAuto;

Auto miaAuto = (Auto) unVeicolo;

Questo perché l'upcasting non pud mai fallire. Ma se si ha un gruppo di Veicoli
diversi e si vogliono assegnare tutti a un Auto, allora c'é€ una possibilita, che alcuni di
questi Veicoli sono in realta Moto, e il processo fallisce lanciando
ClassCastException.

L'operatore instanceof

Per conoscere il tipo dell'oggetto contenuto in una variabile durante I'esecuzione del
programma, € possibile utilizzare I'operatore instanceof, che indica se un
determinato oggetto & di tipo specificato. Per esempio, per sapere se mioVeicolo & di
tipo Auto, si pud scrivere:

Auto miaAuto = new Auto();
Veicolo unVeicolo= miaAuto;
if (unVeicolo istanceof Auto) {

System.out.println ("E un Auto! Ora si pud ridurre a un
Auto") ;
Auto miaAuto= (Auto) unVeicolo;

}

144

unVeicalo.| . ‘ ‘ . ‘ mia.ﬂuto.l
Auto miaAu) assegnaMatricola(int matricola) : void Veic.

s 2 : : : Auto mia) assegnaMatricola(int matricola) : void Veic..:
if (unVeic 5 assegnaProprietario(String nome) : void

if (unVe® assegnaProprietario(String nome) : void

S*stem.o@damm%ﬂatricala{] : dnt i System @ assegnaTipo(String mioTipo) : void
mizAutol () dammiProprietario() : String niaAut) dammiMatricola() : int
: @ equals(Object argd) : boolean i & dammiProprietario() : String

N Eﬁget(lasst) : Class<?>
PRRTRPREY) hashCode() : int
RuHNTE: @ notify() : void

) notifyAll() : void
3 toString() : String
& wait() : void
CRY e < wait(long arg@) @ void

63 dammiTipo() : String

|) equals(Object obj) : boolean
Do @ getClass() : Class<?>

@ hashCode() : int
T e 7 notify() & void

& notifyAll() : void
ANV 0 toString() : String

Codice

Se si usa un metodo della sotto classe da una variabile della superclasse che sta
puntando a un oggetto della sottoclasse si ottiene un errore di compilazione, perché
il metodo non ¢ visibile.

sReference Typer Object Type

o | A] Rt

Questo significa che

Veicolo ObjeCt(VeICO|O la variabile v anche
punta a un

oggetto della sua

' : ttocl :
- Auto | A|Ref [Y Object(auto) [emmmaningie

metodi.

Quindi & solo il Reference Type della variabile che determina quali sono i metodi
visibili da variabile e non Object Type.

Polimorfismo

| polimorfismo consente di

I'Ifel'erI con un unico termine
Auto + (0] o]1=Te1 (ANF] (o)) "entitd" diverse. Ad

esempio, sia un telefono
145

https://repl.it/@RolandoSucco/Reference

fisso sia un portatile permettono di telefonare, dato che entrambi i mezzi sono
definibili come telefoni.

Telefonare quindi, pud essere considerata un'azione polimorfica.

POLIMORFISMO
Polimorfismo / "'r}--—Pol imorfi gmg_n
per metodi ' per dati
7 A “j"—:—l o A
ST S ST, 1 iy A
(" overload)/ Override Collezioni | Parametri
o L R Peag L eterogenee i polimorfi
B T |
Metodi =) \ |
virtuali

Polimorfismo per metodi

Il polimorfismo per metodi, ci permette di utilizzare lo stesso nome per metodi
differenti. In Java esso trova una sua realizzazione pratica sotto due forme:

e |'overload (che potremmo tradurre con "sovraccarico")
e l'override (che potremmo tradurre con "riscrittura™).

Overload

In Java un metodo € univocamente determinato non solo dal suo identificatore ma
anche dalla sua lista di parametri, cioé dalla sua firma. Quindi, in una classe
possono convivere metodi con lo stesso nome ma con differente firma. Per esempio
potremmo assegnare lo stesso nome a due metodi che concettualmente hanno la

stessa funzionalita, ma soddisfano tale funzionalita in maniera differente.
146

Presentiamo di seguito un banale esempio di overload:

public class Aritmetica ({

public int somma(int a, int b) {
return a + b;

}
public float somma(int a, float b) {
return a + b;

}
public float somma(float a, int b) {
return a + b;

}
public int somma(int a, int b, int c¢) {
return a + b + c;

}
public double somma(int a, double b, int c) {
return a + b + c;

}
}

La lista dei parametri ha tre criteri di distinzione:
1. tipale es.: somma(int a, int b) & diverso da somma(int a, float b)
2. numerico es.: somma(int a, int b) € diverso da somma(int a, int b, int c)

3. posizionale es.: somma(int a, float b) & diverso da somma(float a, int b)

Override

L'override (che potremmo tradurre con "riscrittura") € il termine object oriented che
viene utilizzato per descrivere la caratteristica, che hanno le sottoclassi, di ridefinire
un metodo ereditato da una superclasse.

147

Non esistera override senza ereditarieta. Una sottoclasse &€ sempre piu specifica
della classe che estende, e quindi potrebbe ereditare metodi che hanno bisogno di
essere ridefiniti per funzionare correttamente nel nuovo contesto

class Animale{
void verso() {
.out.printin("Grunt");

class Ghepardo extends Animale{
void verso() {
.out.printIn("Groar!");

class Muflone extends Animale {
void verso() {
.out.println("MOGGO!");

Per l'override si devono rispettare queste regole:

1. Il metodo riscritto nella sottoclasse deve avere la stessa firma (nome e parametri)
del metodo della superclasse.

2. Il tipo di ritorno del metodo della sottoclasse deve coincidere con quello del
metodo che si sta riscrivendo, o deve essere di un tipo che estende il tipo di ritorno
del metodo della superclasse.

3. Il metodo ridefinito nella sottoclasse non deve essere meno accessibile del
metodo originale della superclasse."

Il modificatore final

E possibile specificare che un metodo non pud essere ridefinito nelle classi derivate.
Per fare questo & sufficiente aggiungere il modificatore final alla dichiarazione del
metodo, come mostrato di seguito:

public final void unMetodo()
148

Un intera classe pud essere dichiarata final. Le classi final nhon possono essere
utilizzate come classi base di classi derivate. Ecco la sintassi per dichiarare una

classe come final:

public final class unaClasse {final void myMethod()

Binding Dinamico

Supponiamo di dover progettare un insieme di classi che rappresentano diverse
tipologie di figure geometriche: rettangoli, cerchi e cosi via. Ogni figura puo essere

un oggetto di una classe differente:

Classe Rettangolo

Classe Cerchio

variabili di istanza che rappresentano I'altezza, la
larghezza

variabili di istanza che rappresentano il raggio.

In un buon progetto software, queste classi dovrebbero tutte derivare da un'unica

classe, il cui nome potrebbe essere Figura.

149

Si supponga di voler definire dei metodi che permettano di calcolare l'area e il
perimetro di una figura geometrica. Ogni classe ha bisogno di un proprio metodo
visto che deve eseguire operazioni diverse. Sapendo che i metodi appartengono a
classi diverse, & possibile assegnare ai metodi lo stesso nome:

Figura

visualizzal)

areal)

perimetro()

Cerchio Rattangolo
raggio : double base : double
altezza : double

area() ares)
perimetrol) perimetrol)

Se r € un oggetto di tipo Rettangolo e ¢ € un oggetto di tipo Cerchio, il
comportamento dei metodi:

150

r.area()

r.perimetro()

c.area()

c.perimetro()

sara diverso, perché corrisponde all'invocazione di due metodi ben distinti che hanno
implementazioni differenti.

La classe base Figura pud avere dei metodi utilizzabili da tutte le figure. Per
esempio, la classe Figura pud implementare un metodo che visualizza l'area e |l
perimetro della figura. Il metodo visualizza della classe Figura puo utilizzare i metodi
area e perimetro. Un implementazione della classe Figura potrebbe essere:

public class Figura {
public void visualizza() {
System.out.println("Area " + area());
System.out.println("Perimetro" + perimetro());

}

public double area() {

return 0;

}

public double perimetro(){

return 0;

}
}

151

Le classiCerchio e Rettangolo

class Cerchio extends Figura {
private double raggio;
private final double PI = 3.14;

Cerchio(double raggio) {
this.raggio = raggio;

}

public double area() {
return PI * raggio * raggio;

}

public double perimetro() {
return 2 * PI * raggio;
}
}

class Rettangolo extends Figura {
private double altezza;
private double base;

Rettangolo(double base, double altezza)({
this.base=base;

this.altezza=altezza;

}

public double area(){

return base*altezza;

}

public double perimetro(){

return 2*base+2*altezza;

}
¥

Quando si pensa a come usare il metodo visualizza, ereditato dalla classe Figura,
per le dassi Rettangolo e Cerchio emergono delle complicazioni. Si consideri, per
esempio, la classe Rettangolo che & una classe derivata da Figura e pertanto eredita
il suo metodo visualizza che usa i metodi area e perimetro che sono implementati in

152

modo diverso per ogni tipo di figura. Il metodo visualizza & definito nella classe
Figura mentre si vorrebbe che la sua esecuzione invocasse i metodi area e
perimetro specifici di ogni figura. Se r € un'istanza della classe Rettangolo, si vuole
che la seguente istruzione:

r. visualizza()

invochi i metodi area e perimetro della classe Rettangolo e non quella di Figura.

In Java tutto questo accade in modo automatico. Quando viene eseguito il metodo
visualizza della classe Rettangolo, vengono invocati i corrispondenti metodi area e
perimetro definiti nella classe Rettangolo perché Java utilizza un meccanismo
conosciuto come binding dinamico (o dymmic binding o late binding).

BINDING DINAMICO: la risoluzione della chiamata ad un metodo ridefinito avviene
dinamicamente in base al tipo dinamico dell'oggetto riferito e non in base al tipo
statico della variabile referente

Figura r = new Rettangolo(2,3);

il tipo della variabile referente (Figura) € diverso (anche se compatibile) dal tipo
dell'oggetto riferito (Rettangolo) il tipo dell'oggetto riferito si determina solo a run-time
il metodo chiamato € il metodo area() di Rettangolo non il metodo area() di Figura.

class Main {
public static void main(String[] args) {

Figura r =new Rettangolo(2,3);
Figura ¢ = new Cerchio(3);
Figura f=new Figura();
System.out.println("
r.visualizza();
System.out.println(
c.visualizza();
System.out.println(
f.visualizza();

}

153

Codice

Metodi per cui il binding dinamico non viene applicato

Java non utilizza il binding dinamico per:

1. i metodi privati
2. i metodi final
3. i metodi statici

Nel caso dei metodi privati e final, I'assenza di binding dinamico non rappresenta un
limite, perché comunque non sarebbe di alcuna utilita. Al contrario, I'assenza di
binding dinamico per i metodi statici pud essere significativa quando il metodo
statico viene invocato utilizzando un oggetto chiamante invece che mediante il nome
della classe.

Quando Java, non utilizza il binding dinamico, utilizza il binding statico. Nel caso del
binding statico, la decisione su quale definizione di metodo debba essere eseguita
viene presa durante la compilazione sulla base del tipo dell'oggetto chiamante.

Il Listato che segue mostra I'effetto del binding statico nel caso in cui venga invocato
un metodo statico con un oggetto chiamante.

public class Figura {
public void visualizza() {
System.out.println("Area " + area());
System.out.println("Perimetro" + perimetro());

}

public double area() {

return 0;

}

public double perimetro(){

154

https://replit.com/@RolandoSucco/Binding-dinamico

return 0;

¥
public static void disegna(){

System.out.println("disegno figura");

¥
¥

Si noti che il metodo statico disegna() , definito nella classe Figura, € stato ridefinito
nella classe Rettangolo.

class Rettangolo extends Figura {
private double altezza;
private double base;

Rettangolo(double base, double altezza){
this.base=base;
this.altezza=altezza;
}
public double area(){
return base*altezza;
}
public double perimetro(){
return 2*base+2*altezza;
}
public static void disegna(){
System.out.println("disegno Rettangolo");

}
}

Nonostante questo, quando si ha un riferimento a un oggetto di tipo Rettangolo da
una variabile di tipo Figura, il metodo disegna () che viene eseguito € quello definito
nella classe Figura e non quello definito nella classe Rettangolo.

Questo perché un metodo statico viene normalmente invocato utilizzando un nome
di classe e non un oggetto chiamante. Purtroppo non & sempre cosi e alcune volte
un metodo statico pud avere un oggetto chiamante nascosto. Se si invoca un
metodo statico dalla definizione di un metodo non statico senza utilizzare né un
nome di classe, né un oggetto chiamante, l'oggetto chiamante implicitamente
utilizzato é this.

155

Codice
Classi astratte

La classe Forma & stata progettata come una classe base per altre classi, come la
classe Rettangolo, e se non c'é alcuna necessita d'istanziare oggetti di tipo Forma, i
due metodi area() e perimetro(), non verranno mai utilizzato, poiché restituiscono
sempre zero. Infatti non si pud calcolare l'area o il perimetro di una Forma
geometrica senza sapere di che forma si tratta.

Questi metodi sono stati definito all'interno della classe Forma esclusivamente per
sfruttare il polimorfismo.

Tuttavia, invece di fornire una definizione "inventata" di un metodo che si pensa di
ridefinire in una classe derivata, si pud dichiarare il metodo astratto:

public abstract void area();

La sintassi per definire un metodo astratto prevede di far precedere all'intestazione
del metodo la parola chiave abstract, di porre un punto e virgola alla fine
dell'intestazione e di omettere il corpo del metodo.

Definire un metodo astratto significa posticipare la sua definizione al momento in cui
si sapra effettivamente come definirla. Nel caso specifico, &€ come dire che: "ogni
figura avra un metodo area(), ma in questa classe non si sa come implementario”.

Un metodo astratto deve essere ridefinito da ogni classe derivata dalla classe base
astratta. Chiaramente, questo vale se la classe derivata sa come definirlo.
Nell'ipotesi che la classe derivata sappia definirlo, includere un metodo astratto in
una classe base € un modo per obbligare la classe derivata a definire un particolare
metodo.

Java richiede che se una classe ha almeno un metodo astratto, la classe deve
essere dichiarata astratta. Si fa cid includendo la parola chiave abstract
nell'intestazione della definizione della classe:

public abstract class Forma {

156

https://replit.com/@RolandoSucco/Binding-statico

Una classe definita in questo modo € detta classe astratta. Le classi astratte non
possono essere istanziate direttamente, ovvero non si possono creare i relativi
oggetti. Nelle classi astratte si definiscono metodi tutti o in parte anch'essi astratti.

Sintassi:

abstract class ClassName{
public abstract void abstractMethod();

}

Per definire classi e metodi astratti si usa la keyword abstract. Una sottoclasse di
una classe astratta deve obbligatoriamente implementarne gli eventuali metodi
astratti e, altrimenti essa stessa deve divenire classe astratta. Una classe abstract
puod avere anche variabili d'istanza e metodi non abstract.

public abstract class Figura {
public void visualizza() {
System.out.println("Area

+ area());

System.out.println("Perimetro" + perimetro());

}

public abstract double area();
public abstract double perimetro();

}

Codice

Nella Figura mostriamo un altro esempio di ereditarieta con una classe astratta
riferendosi a un'azienda dove si trovano impiegate diverse figure professionali.

{ Dipendente]

A

[.ngegnerJ [Tecnico J[operaiaJ

157

https://replit.com/@RolandoSucco/Astratta

La classe astratta Dipendente avra un metodo astratto per il calcolo dello stipendio,
nelle tre sottoclassi che da essa deriveranno (Ingegnere, Tecnico e Operaio) si dovra
definire in modo specializzato tale metodo.

public abstract class Dipendente

{

private String nome;

private String cognome;

public Dipendente(String nome, String cognome)
{

this.nome = nome;

this.cognome = cognome;

}

protected String getNome() { return nome; }
protected String getCognome() { return cognome; }

public String toString()
{

return cognome + " " + nome;

}
public abstract int calcoloStipendio();

}

Esempio:

* un Ingegnere, avra uno stipendio mensile che sara dato da un importo fisso piu una
percentuale,

» un Tecnico avra uno stipendio mensile dato da un importo fisso piu un quantum in
base ai pezzi lavorati

* un Operaio avra uno stipendio mensile dato da un importo a ore piu una
percentuale su un numero variabile di pezzi lavorati.

public class Ingegnere extends Dipendente {
private int percentage;
private int fisso;

public Ingegnere(String n, String c, int p, int f) {
super(n, c);
setPercentage(p);

158

setFisso(f);
}

public void setFisso(int f)
{
fisso=f >0 ? f : 0;
}
public void setPercentage(int p)
{
percentage = p >0 ? p : 0;
}

@Override
public int calcoloStipendio()

{

return fisso + (fisso * percentage / 100);

}

@Override
public String toString() {
return super.toString() +

guadagna € ";
}

Il Listato evidenzia come la classe ingegnere sia una classe specializzata della
classe base astratta Dipendente: infatti esegue I'override del metodo
calcoloStipendio ereditato per il calcolo della paga.

Inoltre, poiché un Ingegnere & anche un Dipendente dal suo costruttore invochiamo
il costruttore di Dipendente per inizializzare nome e cognome. In modo analogo
possiamo creare le altre due classi.

class Main {
public static void main(String args[]) {
Dipendente e;
Ingegnere eng = new Ingegnere("Mario", "Rossi", 10, 1000);
Tecnico tec new Tecnico("Paolo", "Canali", 800, 3);
Operaio lab = new Operaio("Aldo", "Falco", 2, 44);
e = eng;

System.out.print(e.toString() + e.calcoloStipendio());
= tec;
System.out.print(" | " + e.toString() +
e.calcoloStipendio());
e = lab;
System.out.println(" | " + e.toString() +

e.calcoloStipendio());

}

Output:
Rossi Mario guadagna € 1100 | Canali Paolo guadagna € 815 | Falco
Aldo guadagna € 380

Dal Listato vediamo che nel metodo main si crea il riferimento e del tipo della classe
astratta Dipendente e poi tanti riferimenti (eng, tec e lab) quante sono le classi da
essa derivate. Successivamente assegniamo in sequenza tali riferimenti al
riferimento e di tipoDipendente e da esso invochiamo, il metodo calcoloStipendio per
visualizzare lo stipendio dell'oggetto che sta in quel momento referenziando.

Quindi una classe astratta si utilizza principalmente per definire entita astratte (o di
alto livello) da cui & possibile definire altre classi che hanno una relazione gerarchica
con la classe astratta.

Codice

Interfacce

Un'interfaccia € una sorta di classe astratta che dichiara, principalmente, dei metodi
(& presente solamente la loro Firma) che le classi che la implementano devono poi
definire. Pertanto, essa contiene una serie di metodi astratti (sono implicitamente
abstract).

Sintassi:

modificatore-di-accesso interface MylInterface (

Sintassi per l'implementazione di un'interfaccia:

public class MyClass implements MylInterface{

160

https://repl.it/@RolandoSucco/Classi-Astratte

public interface FormaGeometrica {
doble calcolaPerimetro();
double calcolaArea();

voi disegnaForma();

¥

Un interface pud anche contenere dei dati membro, che il compilatore tratta
automaticamente come:

public final static

ossia come costanti di classe, per questo motivo bisogna inizializzare questi
parametri.

Consideriamo l'interface FiguraGeometrica e una classe Cerchio che la implementi

interface FiguraGeometrica {
double PIGRECO=3.14;
public double calcolaArea();

}

class Cerchio implements FiguraGeometrica {
private double raggio;

Cerchio(double raggio){
this.raggio=raggio;
}
public double calcolaArea(){
return FiguraGeometrica.PIGRECO*raggio*raggio;
}
}

Nell'uso delle interfacce valgono le seguenti regole:
o Possiamo dichiarare una variabile indicando come tipo un'interfaccia
o Non possiamo istanziare un'interfaccia

Vediamo il codice che testa la classe cerchio:

161

e A una variabile di tipo interfaccia possiamo assegnare solo istanze di classi
che implementano l'interfaccia

e Su di una variabile di tipo interfaccia possiamo invocare solo metodi dichiarati
nell'interfaccia.

public class Main {
public static void main(String[] args) {
FiguraGeometrica a;
Cerchio b=new Cerchio(2);
a=b;

System.out.println("l'area del cerchio di raggio 2 & "+
a.calcolaArea());

FiguraGeometrica c =new Cerchio(3);
a=b;
System.out.print("l'area del cerchio di raggio 3 e "+
c.calcolaArea());

Codice

Metodi statici (Java 8)

Con Java 8 e possibile definire all'interno delle interfacce anche metodi statici.
Quindi & possibile scrivere interfacce nel seguente modo:

public interface StaticMethodInterface {
static void metodostatico() {
System.out.println ("Metodo Statico Chiamato!") ;

}

e chiamare metodi statici direttamente dalle interfacce:

public class TestStaticMethodInterface{
public static void main(String args[])

StaticMethodInterface.metodoStatico();

162

https://replit.com/@RolandoSucco/Interface

¥

¥

Un'interfaccia come la precedente non ha bisogno di essere implementata, infatti i
metodi statici di un'interfaccia non vengono ereditati. Interfacce di questo tipo
servono semplicemente per definire metodi statici e pubblici. Ovvero definiscono
funzioni.

Metodi di default e interfacce funzionali (Java 8)

Altra novita di Java 8 & la possibilita di dichiarare metodi concreti all'interno delle
interfacce. Si parla di metodi di default perché vengono dichiarati usando come
modificatore la parola chiave default. Per esempio consideriamo il seguente codice:

public interface Solista {
default void eseguiAssolo() {

System.out.println ("DO RE MI FA SOL LA SI");
}

In questo modo possiamo ereditare questo metodo in un'eventuale sottoclasse
senza dover riscrivere il metodo (che non & astratto). La seguente classe compila
senza problemi:

public class Musicista implements Solista {}

I metodo esequiAssolo() sara sempre possibile riscriverlo all'occorrenza. Avere pero
un'implementazione di default pud essere in generale molto comodo.

E possibile scrivere pitl di un metodo di default in un'interfaccia, e questi possono
convivere con metodi astratti e metodi statici. Il nome "interfaccia" in un certo senso
ha perso di significato, anche se &€ sempre possibile usare le interfacce dichiarando
solo metodi astratti. In particolare prendono il nome d'interfacce funzionali le
interfacce che contengono un unico metodo astratto.

Quando si utilizza un'interfaccia?

Un'interfaccia si utilizza principalmente per definire metodi comuni a piu tipi, i quali
non hanno alcuna relazione gerarchica tra loro.

163

Esempio:

le classi Prodotto e FormaGeometrica hanno bisogno di un metodo per la
conversione degli attributi in una stringa XML

l'interfaccia ConvertiDati definisce il metodo generaXML(), senza
implementarlo

le classi Prodotto e FormaGeometrica, possono implementare l'interfaccia
Converti Dati attraverso l'utilizzo della chiave riservata implements.

nelle classi Prodotto e formaGeometrica & necessario implementare il metodo
generaXML() definito nell'interfaccia ConvertiDati.

il contenuto del metodo generaXML() e I'XML generato, cambia in base alla
classe che lo implementa

public class Prodotto implements ConvertiDati{
@Override
public String generaXML() {

Interfacce e classi astratte, differenze

Le interfacce e le classi astratte sono elementi molto simili, e la loro similitudine &
aumentata in Java8 che ha introdotto la possibilita di definire una implementazione,
detta default, dei metodi dichiarati nelle interfacce.

Interfacce Classi astratte
Istanziabile no no
Fields solo static final si
Costruttore no si
Metodi statici Java8+ si
Dichiarazione metodi (virtual) no si
Implementazione metodi java8+ (con il qualificatore default) si

Entrambe non possono essere istanziate e possono dichiarare al loro interno metodi
con o senza implementazione. Tuttavia ci sono delle caratteristiche che le

164

differenziano e che fanno la differenza, come per esempio le classi astratte possono
dichiarare campi che sono non static e final, e dichiarare metodi public, protected e
private. Invece con le interfacce tutti i campi sono automaticamente public, static e
final e tutti i metodi che vengono dichiarati o definiti sono public. Un'altra importante
caratteristica che le differenzia e che spesso € punto focale nella scelta di uno o
dell'altro approccio, ¢ il fatto che si pud estendere una sola classe astratta, mentre si
possono implementare tutte le interfacce che si vuole.

Quando utilizzare l'interfaccia e quando la classe astratta?

In base a quanto detto, cosa € meglio utilizzare? E in quali circostanze? Si usa una
classe astratta per condividere codice fra piu classi, se piu classi hanno in comune
metodi e campi o se si vogliono dichiarare metodi comuni che non siano
necessariamente campi static e final. Si decide di utilizzare un'interfaccia se ci si
trova nella situazione in cui alcune classi (assolutamente non legate fra di loro) si
trovano a condividere i metodi di un'interfaccia, se si vuole specificare il
comportamento di un certo tipo di dato (ma non implementarne il comportamento) o
se si vuole avere la possibilita di sfruttare la "multiple inheritance".

Enum in Java

Le Enum definiscono un tipo di dati che pu6 assumere un insieme limitato e fissato
di valori. Ad esempio, un tipo di dati che rappresenta un giorno della settimana puo
assumere solo uno di 7 possibili valori ognuno con un determinato giorno. La
sintassi per definire un enumerazione:

Nome

m

LUNEDI,MARTEDI,
DOMENICA

[wﬂ&,ﬁ

Keyword

165

public enum Giorno {
LUNEDI,
MARTEDI,
MERCOLEDI,
GIOVEDI,

VENERDI,
SABATO,
DOMENICA

Possiamo definire una variabile di tipo Giorno come

Giorno giornoDellaSettimana;

Abbiamo una variabile che potra contenere solamente un valore appartenente al set
specificato nella definizione delllenum Giorno e contemporaneamente avremo a
disposizione anche i nomi simbolici (le costanti di prima) da usare nella scrittura del
programma:

giornoDellaSttimana= Giorno. LUNEDI;

A ogni costante della classe viene assegnato in automatico un valore numerico in
base all'ordine in cui sono stati scritti (nel nostro caso, a LUNEDI sara assegnato
zero, a MARTEDI uno, a DOMENICA sei).

Questo valore indica la posizione occupata all'interno della classe.
Tecnicamente parlando in Java una enum €& una classe come le altre ma che
"implicitamente" estende sempre la classe java.lang.Enum. Esistono metodi per

passare da indice numerico a valore enumerato, e viceversa.

Per passare da valore enumerato a indice, si usa il seguente metodo della classe
Enum

public int ordinal()

restituisce un intero che rappresenta l'indice dell' enum.

166

Per l'operazione inversa, si usa il seguente metodo statico, che ogni classe
enumerata possiede automaticamente (non appartiene alla classe Enum)

public static E[] values ()

restituisce un array contenente tutti i possibili valori di E.

Quindi, per ottenere il valore di posto i-esimo, & sufficiente accedere all'elemento
i-esimo dell'array restituito da values.

valueOf (str)

restituisce la costante di enumerazione i cui valori corrispondono alla stringa passata
in str.

Codice

Il fatto che le enum siano a tutti gli effetti classi, apre la possibilita di aggiungere
dentro di essi metodi, attributi e costruttori. Esaminiamo un po di sintassi:

1. I costruttori devono essere privati e non possono essere chiamati
esplicitamente, sono unicamente a disposizione del compilatore.

2. La lista dei valori nel caso in cui siano definiti dei costruttori non deve essere
considerata, come abbiamo fatto fino a ora, come una lista di etichette ma
come una forma compatta per istruire il compilatore a costruire determinate
istanze della classe e assegnare loro un nome simbolico. Non ci sono
restrizioni circa i metodi e gli attributi che possono essere inclusi nel corpo di
un enum.

public enum Giorno {
LUNEDI(1),
MARTEDI(2),
MERCOLEDI(3),

GIOVEDI(4),
VENERDI(5),
SABATO(6),
DOMENICA(7);

167

https://replit.com/@RolandoSucco/Enumerazion

private int valore;
private Giorno(int valore){
this.valore=valore;

}

public int getValore(){
return valore;

Giorno giornoDellaSttimana=Giorno.LUNEDI;

Quando definiamo la variabile tutti i costruttori vengono invocati con il valore
predefinito. E quindi possiamo accedere a questo valore tramite il metodo:

getValore();

Lo stesso risultato si ottiene:

Giorno.LUNEDI.getValore();

Codice

168

https://replit.com/@RolandoSucco/Enumerazioni-1

Eccezioni

Un'eccezione e una situazione
imprevista (errore) che non viene rilevata
durante la fase di compilazione, ma si
presenta durante I'esecuzione di
un'applicazione. Un errore di questo tipo
impedisce la normale esecuzione del
programma e dev'essere gestita,
altrimenti il programma s'interrompe.

In Java é possibile gestire le eccezioni utilizzano all'interno del codice delle parole
chiavi:

1. try

2. catch
3. finally
4. throw
5 throws

Sara anche possibile creare eccezioni personalizzate e decidere non solo come,
ma anche in quale parte del codice gestirle, grazie a un meccanismo di
propagazione molto potente. Questo concetto & implementato nella libreria Java
mediante la classe Exception (sotto classe di Throwable) e le sue sotto classi.

Exception: Rappresenta la
superclasse di tutte quelle
eccezioni gestibili ad esempio:

L'eccezione che si pud
verificare quando in un
programma si esegue una
divisione per zero. Tale
operazione non € eseguibile.

Error: Rappresenta una situazione imprevista non dipendente da un errore
commesso dallo sviluppatore. A differenza delle eccezioni, gli errori non sono

169

gestibili. Un esempio di errore che potrebbe causare un programma € quello relativo
alla terminazione delle risorse di memoria. Questa condizione non & gestibile.

Un'ulteriore categorizzazione delle eccezioni & data dalla divisione delle eccezioni in:

1. unchecked: Ci si riferisce alle RuntimeException (e le sue sottoclassi)
Eccezioni non controllate (unchecked) Sono dovute al codice scritto nel nostro
programma e in linea teorica potrebbero essere evitate. Rappresentano i
«famosi» bug software. Queste eccezioni non vengono verificate dal
compilatore e possono accadere solo durante I'esecuzione del programma.

2. checked exception: Tutte le altre. Sono dovute a eventi che si verificano
esternamente al software (esempio l'accesso a un file inesistente). Si
chiamano controllate in quanto il compilatore verifica che vengano indicate e
intercettate nel software. Se non vengono indicate, si hanno degli errori di
compilazione. Se si utilizza un metodo che lancia una checked exception
senza gestirla da qualche parte, la compilazione non andra a buon fine. Da qui
il termine checked exception (in italiano "eccezioni controllate".

Il fatto che sia la classe Exception sia la classe Error estendono una classe che si
chiama "lanciabile" (Throwable) & dovuto al meccanismo con cui la JVM reagisce
guando s'imbatte in una eccezione-errore.

Se un blocco di codice genera un'eccezione durante il runtime, la JVM istanzia un
oggetto dalla classe eccezione relativa al problema e lancia I'eccezione appena
istanziata (tramite la parola chiave throw). Se il nostro codice non cattura (tramite la
parola chiave catch) l'eccezione, il gestore automatico della JVM interrompe |l
programma generando in output informazioni dettagliate su cid che & accaduto.

—

Lancia eccezione Lo CF indicazione

| & ; : ; 1
i —
L

170

Supponiamo che durante I'esecuzione un programma provi a eseguire una divisione
per zero tra interi. La JVM istanziera un oggetto di tipo ArithmeticException
(inizializzandolo opportunamente) e lo lancera. In pratica € come se la JVM
eseguisse le seguenti righe di codice:

ArithmeticException ex = new ArithmeticException();

throw exc;

Tutto avviene dietro le quinte e sara trasparente allo sviluppatore.

Ci sono 3 modi di gestire l'eccezioni:

eccezione

B

Se un'eccezione € ignorata da un programma, questo terminera producendo un
messaggio opportuno con l'indicazione delle chiamate di metodi che hanno portato
all'eccezione dell'errore della linea in cui I'eccezione si € verificata.

public class Main

{

public static void main(String args[])
{
int x 3;
int y = 0;
int z X/VY;
System.out.println("z="

+ 2);

171

Main Exception in thread "main" java.lang.ArithmeticException: / by zero
at Main.main(Main.java:7)

Gestire le Eccezioni (processare I'eccezione quando accade)

Nell'esempio precedente l'eccezione genera un messaggio molto esplicativo dal
momento che sono stati evidenziati:

1. Il tipo di eccezione (java.lang.ArithmeticException);

2. Un messaggio descrittivo (/ by zero);

3. Il metodo in cui € stata lanciata I'eccezione (Main.main):

4. |l file in cui & stata lanciata I'eccezione (Main.java):

5. La riga in cui é stata lanciata I'eccezione (:7).

L'unico problema & che il programma & terminato prematuramente. Utilizzando le

parole chiave try e catch sara possibile gestire I'eccezione in maniera
personalizzata:

172

//blocco di codice
}
catch (ExceptionType ex)
{

//codice

}

catch (ExceptionType ex)

{
}

Racchiudiamo il codice da controllare dentro un blocco che inizia con la parola
chiave try.

//codice

System.out.println("z=
}

catch (ArithmeticException ex)

{

System.out.println("Si e' verificata un'eccezione -> siamo
nel blocco catch");

+ 2);

}

System.out.println("siamo fuori dal blocco catch");

}
}

Se durante I'esecuzione del programma tutto va bene i blocchi catch vengono saltati
e il programma prosegue normalmente.

Se nel blocco try viene sollevata un'eccezione (nell'esempio ArithmeticException)
verra catturata nel blocco catch, e viene eseguito il codice contenuto nel blocco.

Si possono inserire una serie di blocchi catch in modo da gestire una serie di
eccezioni.

Il blocco catch deve dichiarare un parametro (come se fosse un metodo), il Data
Type di questo parametro deve essere una classe derivata dalla classe throwable.

Per reperire informazioni sull'eccezione sollevata si usa il metodo printStackTrace()
che visualizza messaggi informativi identici a quelli visualizzati quando I'eccezione
non & gestita, ma senza interrompere il programma. E fondamentale che si dichiari,
tramite il blocco catch, un'eccezione del tipo giusto.

Codice

Come per i metodi, anche per i blocchi catch i parametri possono essere polimorfi.
Per esempio, il seguente frammento di codice:

int a
int b

try{
int c= a/b:
System.out.printin(c);

174

https://replit.com/@RolandoSucco/EsempioEccezioni

} catch (Exception ex){
ex.printStackTrace();

contiene un blocco catch che cattura qualsiasi tipo di eccezione, essendo Exception
la superclasse da cui discende ogni altra eccezione. Il reference ex €& in
quest'esempio un parametro polimorfo. E possibile far seguire a un blocco try piu
blocchi catch, come nel seguente esempio:

int a = 10;

int b= 0;

try{
int c= a/b;
System.out.println(c);

} catch (ArithmeticException ex) {

System.out.printin("Divisione per zero...");
}catch (NullPointerException ex){

System.out.println("Reference nullo...");
}catch (Exception ex) {

ex.printStackTrace();

In questo modo il programma risulta piu robusto e gestisce diversi tipi di eccezioni.
Nel peggiore dei casi (ovvero se il blocco try lanciasse un'eccezione non prevista)
I'ultimo blocco catch gestisce il problema.

finally

E possibile far seguire un blocco try, oltre che da blocchi catch, da un altro blocco
definito dalla keyword finally. Cido che & definito in un blocco finally viene sempre
eseguito:

e Sia se viene lanciata un'eccezione.
e Sia se non viene lanciata nessuna eccezione.

Per esempio, € possibile utilizzare un blocco finally quando esistono operazioni
critiche che devono essere eseguite in qualsiasi caso.

175

try { — 1 o pill blocchi catch

[* operazione critica che puo)) ”
sallevars sccexionl ¥ Ogni catch associata ad un ftipo
} d'eccezione
catch (Exception e) { La computazione prosegue fino alla

— prima clausola catch che corrisponde

" EXCEPTION HANDLER %/ . ' -
al tipo d'eccezione sollevata

}

finally{ l ~ Opzionale, indica il codice da esguire
I* blocco da eseguire sempre */ anche in caso di errore

}

public class Eccezione {
public static void main(String args[]) {
int a = 10;
int b =0;
try{
int ¢ = a/b;
System.out.println(c);
}catch (ArithmeticException exc) {
System.out.println("Divisione per zero...");
}catch (Exception exc){
exc.printstackTrace);
}inally {
System.out.println("Operazione terminata™);

L'output del programma é: Divisione per zero... Operazione terminata.
Se invece b é diversa da zero(b= 2) :
Output: Operazione terminata.

E possibile anche far seguire direttamente a un blocco try un blocco finally, che viene
eseguito sia in presenza che in assenza di un'eccezione. Comunque, se si verifica

176

un'eccezione, non essendo gestita con un blocco catch, il programma terminerebbe
in modo anomalo.

Propagazione: l'istruzione throws

Il costrutto try - catch permette di gestire i problemi localmente, nel punto preciso in
cui sono stati generati.

Tuttavia, in un'applicazione stratificata, pud essere preferibile fare in modo che le
classi periferiche lascino rimbalzare I'eccezione verso gli oggetti chiamanti, in modo

da delegare la gestione dell'eccezione alla classe che possiede la conoscenza piu
dettagliata del sistema.

o gy B

Gestione m .
. : eccezione
dell’eccezione

L'istruzione throws, se € presente nella firma di un metodo, consente di propagare
I'eccezione al metodo chiamante, in modo da delegarne a esso la gestione:

v

public void divisione(int a, int b) throws
ArithmeticException {

int c=a/b:
}

La chiamata al metodo divisione, definito con clausola throws. dovra essere posta
all'interno di un blocco try - catch.

public void aritmetica(int a, int b){

try{
int c=divisione (a,b);
Ycatch(ArithmeticException e){

}
}

177

public int divisione(int a, int b) throws ArithmeticException {
int c=a/b;

return c;

}

In alternativa, il metodo chiamante potra a sua volta delegare la gestione
dell'eccezione mediante una throws.

public void aritmetica(int a, int b) throws ArithmeticException{
int c=divisione (a,b);

public int divisione(int a, int b) throws ArithmeticException {
int c=a/b;
return c;

}

Codice

Lancio di eccezioni: il costrutto throw

Finora si € visto come gestire metodi che possono generare eccezioni, o0 in
alternativa come delegare la gestione delle stesse a un metodo chiamante. Ma cosa
si deve fare se si desidera generare in prima istanza un'eccezione?

Se vogliamo lanciare un'eccezione durante I'esecuzione del programma possiamo
utilizzare la parola chiave throw.

L'istruzione throw richiede come argomento un oggetto Throwable o una sua

sottoclasse. E possibile utilizzare throw all'interno di un blocco catch, qualora si
desideri ottenere sia la gestione locale di un'eccezione sia il suo inoltro all'oggetto

chiamante.

178

https://replit.com/@RolandoSucco/uso-di-throws

public class Main {
public static void main(String[] args) {
int a= 10;
int b= 0;
try{
int c= divisione(a,b);
System.out.println(c);
}Ycatch(Exception e){
System.out.println(e.getMessage());
}finally{
System.out.println("Programma terminato");

}

public static int divisione(int a,int b) throws Exception{
int c;

throw new Exception("il denominatore deve essere diverso da zero");
else

c=a/b;

return c;

Codice

Eccezioni definite dall'utente

Nonostante I'enorme varieta di eccezioni gia presenti in Java, il programmatore puo
facilmente crearne di proprie, qualora desideri segnalare condizioni di eccezione
tipiche di un proprio programma. Per creare una nuova eccezione € sufficiente
dichiarare una sottoclasse di Exception (o di una qualsiasi altra eccezione esistente)
e ridefinire uno o piu dei seguenti

costruttori:

Exception(): crea un'eccezione.

Exception(String message): crea un'eccezione specificando un messaggio
diagnostico.

Exception(Throwable cause): crea un'eccezione specificando la causa.
Exception(String message, Throwable cause): crea un'eccezione
specificando un messaggio diagnostico e una causa.

179

https://replit.com/@RolandoSucco/uso-di-throw

Tuttavia la JVM non puo lanciare automaticamente la nostra MiaException, la JVM,
infatti, sa quando lanciare una ArithmeticException ma non sa quando lanciare una

MiaException. In tal caso sara compito dello sviluppatore lanciare l'eccezione
usando la parola chiave throw.

public class MyException extends Exception |

public MyException () {
super();
|
public MyException (String message) (
super(message);
|
public Exception(String message, Throwable cause) {

super(message, cause);
|

public Exception(Throwable cause) |
super(cause);

Per rilanciare I'eccezione personalizzata

.throw new MiaExeption ("MESSAGGIO ERRORE") ;

Codice

180

https://replit.com/@RolandoSucco/Eccezioni-personalizzate

Stringhe
Tipo di dati String

Una stringa € una sequenza immutabile di caratteri. | caratteri sono rappresentati
in memoria usando la codifica UFT-16 e i simboli Unicode. La codifica prevede che
un singolo carattere occupi 16 bit. Sono esempi di stringhe:

e una frase
e il codice fiscale
e Uun numero di telefono

Una stringa non € un array di caratteri ma un oggetto definito nella classe;

java.lang.String

Per dichiarare e assegnare una stringa si possono usare i metodi:

String Literals

String txt= "Ciao Mondo";

Usando le virgolette doppie e non gli apici singoli che rappresentano un singolo
caratteri.

Oppure si possono usare i costruttori della classe String():

String txt= new String();

Stringa null.

String txt= new String("Ciao Mondo");

Crea una stringa uguale a quella passata come parametro;

String txt= new String(char[] caratteri);

181

Crea una stringa da un array di caratteri,

String txt= new String(charf{] c, int offset,int count);

Crea una stringa composta da un sottoinsieme di caratteri contenuti nell'array c. Tale
sottoinsieme & costruito fornendo l'indice di partenza inclusivo e il numero di
caratteri.

Per inserire caratteri speciali all'interno di una stringa si fa ricorso al carattere di
escaping:

\(backslash)

Ad esempio, per inserire un ritorno a capo si utilizza la sequenza:

\n

Questo meccanismo consente di inserire lo stesso delimitatore di stringa all’interno
della stringa:

Sequence Character represented

\0 The NUL character (\u0000).

\b Backspace (\u0008).

\t Horizontal tab (\u0009).

\n Newline (\uoo0o0a).

\v Vertical tab (\u0008).

\f Form feed (\u000c).

\r Carriage return (\u000D).

X" Double quote (\u0022).

\' Apostrophe or single quote (\u0027).

\\ Backslash (\u005c).

\xXX The Latin-1 character specified by the two hexadecimal digits xx.
\uXXxXxx The Unicode character specified by the four hexadecimal digits xxxx.

182

La classe String € immutabile, cioé lo stato di un'istanza di quella classe non puo
essere modificato dopo che & stata creata. Per comprendere questo concetto
vediamo come le stringhe vengono salvate in memoria.

Se noi creiamo piu istanze di una determinata classe, ognuna contiene un reference
a una determinata area di memoria indipendentemente dal contenuto.

Libro 1= new Libro("java 10");

Libro 12= new Libro("java 10");

Quando abbiamo a che fare con le stringhe java gestisce un'area di memoria
particolare (String Pool) che contiene i valori delle stringhe create. Se istanziamo
due oggetti string che contengono lo stesso valore questi puntano alla stessa area di
memoria.

String s1= new String("java 10");

String s2= new String("java 10");

183

String Pool

La classe String non & ereditabile:

| MiaClasseString.java &3

. 1 package it.corsi.java;

wn B p

}

L'ereditarieta si effettua con il comando
extends.

La classe String € immutabile, quindi non posso
creare una classe che la estende.

184

Essendo String una classe possiede dei metodi che permettono di manipolarla:

lista completa dei metodi

Lunghezza della stringa

Il metodo:

length() restituisce la lunghezza di una stringa:

String txt="ciao mondo";
int i=txt.length();

a i viene assegnato il valore 10
Estrazione di caratteri da una stringa

charAt(int posizione):

Restituisce il carattere della posizione specificata se non viene trovato alcun
carattere, restituisce una stringa vuota.

o |Contenuto

Indice

Inizio Fine

String str="Ciao modo"

185

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

str.charAt(5); restituisce il carattere 'M'

codePointAt(int index)

Restituisce il codice Unicode in corrispondenza dell'indice specificato.

String str="Ciao modo"

str.codePointAt(5);

restituisce 77

Ricerca di una stringa

string.indexOf(int ch)

- restituisce la posizione della prima occorrenza del carattere ch all'interno
dell'oggetto stringa (restituisce -1 se non trovato);

string.indexOf(int ch, int start)

Parametri:

e ch: richiesto carattere da cercare
e start: indice di partenza

string.indexOf(String s)
Restituisce la prima occorrenza della sottostringa s

string.indexOf(String s, int start)

186

Restituisce la prima occorrenza della sottostringa s a partire da start

string.lastiIndexOf(String s)

- restituisce la posizione dell'ultima occorrenza della sottostringa s all'interno
dell'oggetto stringa (restituisce -1 se non trovato).:

string.lastindexOf(String s, int start)

Parametri:

e s: richiesto stringa da cercare
e start: indice di partenza contando all'indietro

string.lastindexOf(int ch)

- restituisce la posizione dell'ultima occorrenza di uno specifico valore all'interno
dell'oggetto stringa (restituisce -1 se non trovato).:

string.lastindexOf(int ch, int start)

Parametri:

e ch: richiesto carattere da cercare
e start: indice di partenza contando

Concatenazione

La concatenazione consiste nell'unire piu stringhe in un'unica stringa. La
concatenazione si puo effettuare in due modi:

1. Utilizzando l'operatore +.

2. Utilizzando il metodo concat.

A una stringa e possibile concatenare anche numeri.

187

String str1 =" ciao ";

String str2 =" mondo ";

String str3 = str1.concat(" ", str2);
str3= str3+" "+123;

Trasformazione

Si hanno a disposizione diversi metodi che consentono di effettuare trasformazioni
delle stringhe. Ad es. Si puo trasformare una stringa:

e In minuscolo toLowerCase().
e In maiuscolo toUpperCase().
e Eliminare spazi iniziali e finali trim().

String txt=" Programmare in java ";
String s=txt.trim();
String t=txt.toUpperCase();

String w=txt.toLowerCase();

Tutti i metodi non modificano la stringa di partenza ma creano una nuova stringa.
Per modificare la stringa di partenza si deve riassegnare

String txt=" Programmare in java ";
txt=txt.trim();
txt=txt.toUpperCase();

Estrazione (sotto stringa) substring

substring(int start):

Restituisce la sottostringa che va dal carattere che si trova all'indice indicato in
start fino alla fine della stringa.

substring(int start, int end):

188

restituisce la sottostringa che va dal carattere che si trova all'indice indicato in start
fino al carattere che si trova all'indice indicato in end-1.

Codice
Confronto

La classe String mette a disposizione due metodi per effettuare il confronto tra
stringhe:

o
equals(String s):
effettua un confronto tra due stringhe e ritorna true se sono uguali, false altrimenti.

Questo metodo € case sensitive (cioé "parola” e "Parola" sono diverse).

equalsIgnoreCase(String s):

effettua un confronto tra due stringhe e ritorna true se sono uguali, false altrimenti.
Questo metodo non & case sensitive (cioé "parola" e "Parola" sono uguali).

Esempio: equals

String str1 = "Stringa di test";

String str2 = "stringa di TEST";
System.out.printin(str1.equals(str2));
Output: false

Esempio: equalslenoreCase

String str3 = "Stringa di test";

String str4 = "stringa di TEST";
System.out.printin(str3.equalsignoreCase(str4));
Output: true

189

https://www.jdoodle.com/embed/v0/ui8

Sostituzione del contenuto in una stringa

Il metodo replace () sostituisce tutte le occorrenze di un valore specificato con un
altro valore in una stringa:

stringa.replace(String searchvalue, String newvalue)

Parametri

e searchvalue: Il valore da sostituire

e newvalue: Il nuovo valore
Il metodo replace () non modifica la stringa su cui ¢ chiamato. Restituisce una
nuova stringa.

Per impostazione predefinita, il metodo replace () € case sensitive.

Per sostituire solo la prima occorrenza si utilizza il metodo:

stringa.replaceFirst(String regex, String newvalue)

Sostituisce la prima sottostringa di questa stringa che corrisponde all'espressione
regolare data con la sostituzione data.

public class Main {
public static void main(String[] args) {
String txt="Ho un giubbotto blu e un maglione blu";
System.out.print(txt.replaceFirst("blu","rosso"));

Output:
Ho un giubbotto rosso e un maglione blu

Trasformare una stringa in un Array

split() - divide una stringa sulla base di un separatore e restituisce un array;
vediamo un esempio:

190

String miaStringa = "divido la stringa in base agli spazi vuoti!";

String[] array=miaStringa.split(" "));

Se il separatore € omesso, 1'array restituito conterra l'intera stringa nell'indice [0].
Se il separatore e "", 'array restituito sara un array di singoli caratteri:

String text="ciao mondo";

String[] array=text.split("");

Output

['c,'i','a",'d","",'m','0, 'n', 'd", '0]
Metodi utili

e valueOf(valore): restituisce il valore primitivo Nota: questo metodo viene
solitamente chiamato automaticamente da JavaScript dietro le quinte e non
esplicitamente nel codice.

e startsWith(String prefix): metodo che ritorna true se la stringa inizia con il
prefisso indicato, false altrimenti.

e endsWith(String suffix): metodo che ritorna true se la stringa finisce con il
suffisso indicato, false altrimenti.

Esempio:
String str2 = "Stringa 2",

boolean starts = str2.startsWith("Str"); // ritorna true
boolean ends = str2.endsWith("Str"); // ritorna false

int numString = String.valueOf(28);

Il metodo:

str1.compareTo(str2)

restituisce un numero che indica se str1 viene prima, dopo, oppure € uguale a str2:

191

e Restituisce numero negativo se str1 e ordinato prima di str2
e Restituisce 0 se le due stringhe sono uguali
e Restituisce 1 se str1 € ordinato dopo str2

compareTolgnoreCase(String str)

Confronta le stringhe ignorando maiuscole e minuscole.

string.repeat(count)

crea una nuova stringa ripetendo il valore di string count volte.

192

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#compareToIgnoreCase(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

Programmazione generica

La programmazione generica € stata introdotta in Java a partire dalla versione 5, e
permette di scrivere:

e classi,
e interfacce
e metodi

in forma parametrica, generici, ovvero che compiono una medesima operazione su
un insieme di tipi di dato differenti.

L'utilizzo pit massiccio dei tipi generici e sicuramente contestuale all'utilizzo delle
collection.

Se si vuole realizzare una classe (contenitore) per tipi diversi si pud scrivere la
classe nel seguente modo:

public class Contenitore {
private Object object;
public void setObject(Object object) {
this.object = object;

}

public Object getObject() {
return object;

Il parametro object pud assumere come valore qualsiasi oggetto.

La classe di Test:

public class Test {
public static void main(String[] args) {
Contenitore a = new Contenitore();
a.setObject("ciao mondo");
System.out.println((String) a.getObject());

a.setObject(123);
System.out.println((int) a.getObject());

}

193

Output:

ciao mondo

123

Questa semplice classe non & facile da gestire. Infatti, una volta recuperato I'oggetto
object mediante il metodo getObiect() si & obbligati a convertirlo per usarlo. Questa
operazione € potenzialmente pericolosa, perché potrebbe anche recuperare un tipo
diverso da quello che ci si aspetta.

Nella classe Test inseriamo volontariamente un errore:

public class Test { public static void main(String[] args)
{

Contenitore a = new Contenitore();
a.setObject("ciao mondo");
System.out.println((String) a.getObject());

a.setObject(123);

System.out.println((int) a.getObject());

a.setObject(143);
System.out.println((String) a.getObject());

In fase di compilazione non viene rilevato nessun problema, ma se la si esegue si ha
un eccezione.

ciao mondo
123
Exception in thread "main" java.lang.ClassCastException:

java.lang.Integer cannot be cast to java.lang.String

194

at Test.main(Test.java:9)

Generics e tipi parametro

Per rendere il codice precedente piu robusto la si pud "renderla generica"
aggiungendo alla definizione dei parametri usando le parentesi angolari che
circondano gli identificatori dei tipi.

Sintassi:

class Nome <T1, T2... Tn> {

¥

La classe contenitore diventa

public class Contenitore <T>{

private T object;

public void setObject(T object) {
this.object = object;

}

public T getObject() {
return object;

Si noti che ora al posto di Obiect c'¢ il tipo parametrico T, che non rappresenta un
tipo esistente ma € un segnaposto per qualsiasi data Type. Questo verra sostituito
con un tipo reale nel momento in cui verra istanziato un Contenitore.

Una classe per il test.

public class Main {
public static void main(String[] args) {

Contenitore<String> a = new Contenitore<String>();
a.setObject("ciao mondo");
System.out.println(a.getObject());

195

Contenitore<Integer> b = new Contenitore<Integer>();
b.setObject(123);
System.out.println(b.getObject());

}

In questo modo &€ come se si sostituisce al parametro T prima la classe String e poi
la classe Integer in tutta la definizione della classe, Quindi il metodo setObject()
accettera solo quella classe Se si passa un altro tipo si ottiene un errore in
compilazione.

public class Main {
public static void main(String[] args) {
Contenitore<Integer> b = new Contenitore<Integer>();
b.setObject(123);
System.out.println(b.getObject());

String valore=b.getObject());

}

Errore ottenuto in compilazione.

Per convenzione quando si dichiara un tipo parametro si usa un identificatore
costituito da una sola lettera maiuscola, che dovrebbe rappresentare l'iniziale di un
nome simbolico (nel caso di T significa "Type"). In particolare la libreria standard usa
Spesso:

e E per"Element",
o K per "Key".

e N per "Number"

e T per"Type"

e \ per "Value",

e S. U.V peril secondo, terzo e quarto tipo.

Ricapitolando la sintassi di una classe generica:

196

class NomeClasse<parametri>{

/Ilcodice

}

per istanziarla si usa la sintassi:

NomeClasse<parametri>variabile = new NomeClasse<>()

Facciamo un altro esempio usando la classe contenitore su delle classi fatte da noi
invece che sulle classi String e Integer.

public class Acqua {
public String toString(){
return " una bottiglia d'acqua";

public class Vino{
public String toString(){

return " una bottiglia di vino";

public class Main {
public static void main(String[] args) {
Contenitore<Vino> a = new Contenitore<>();
a.setObject(new Vino());
Vino vino=a.getObject();

197

System.out.println(vino);

¥

Se si usano altri tipi si ottengono errori in compilazione:

pupLlC CLasSsS Maln 1

ubl_'_ PR R O e SRRt T IR G Rl B wn B B TR s, Bl | e | r
i Co [Java] The method setObject(Vino) in the type

Contenitore<Vino> is not applicable for the a

Vir‘guments (Acqua)

Sy void Contenitore.setObject(Vino object)
a.setObject(new Acqua());

Codice

Classi con piu parametri generici

Una classe generica pud contenere piu tipi di parametri riscriviamo la classe
contenitore con due tipi di parametri.

public class Contenitore <T,V>{
private T t;
private V v;
Contenitore(T t,V v){

this.t=t;

this.v=v;
}
public T getT() {

return t;

}
public V getV() {

return v;

198

https://replit.com/@RolandoSucco/Introduzione-ai-generics1#Main.java

La classe contenitore si istanzia passando due parametri che possono essere: due
oggetti di tipo diverso, o due oggetti dello stesso tipo il funzionamento & identico.

public class Main {

public static void main(String [] args) {
Contenitore<String,Integer> a= new Contenitore("java ",17);
System.out.println(a.getT()+a.getV());

Contenitore<String,String> b= new Contenitore("linguaggio
","java");

System.out.println(b.getT()+b.getV());

}

}

Codice

Parametri di tipo delimitati (bounded Types)

Esistono situazioni in cui si ha la necessita di applicare un limite al parametro.
Scriviamo una classe Generica che si occupa di calcoli.

class Statistica <T>{
private T[] numeri;
Statistica(T[] numeri) {
this.numeri = numeri;
}
double getMedia() {
double sum = 0.0;

for(T numero : numeri) {
sum += numero.doubleValue();

}

return sum / numeri.length;

}

Quando si compila la classe si ha un errore:

199

https://replit.com/@RolandoSucco/classe-generics-con-piu-parametri#Main.java

12 class Statistica <T >{

@& private T[] numeri;
14| B Statistica(T[] numeri) |cannotfind symbol
15 this . REBREl = ‘Hiiaid s symbpl: melthod doubleValue()
! location: variable numero of type T
16| ¥ where T is a type-variable:
17| & double getMedia() { T extends Object declared in class Statistica
18 double sum = 0.0; ——
19 for(T numero : numeri) L(Alt-Enter shows hints)
- sum += numero.doubleValuel();
21 }
22 return sum / numeri.length;
23| - ¥
24 3

perché il metodo doubleValue non viene riconosciuto in quanto € un metodo della
classe Number mentre T & un tipo Object.

Si deve fare in modo che la classe accetti solo parametri di tipo numerico. Per far
questo si deve estendere il parametro con la classe Number, cosi da porre un limite
superiore.

class Statistica <T extends Number>{
private T[] numeri;
Statistica(T[] numeri) {
this.numeri = numeri;

double getMedia() {
double sum = 0.0;

for(T numero : numeri) {
sum += numero.doubleValue();

¥

return sum / numeri.length;

}

200

Abbiamo specificato che il parametro T deve essere sostituito da un tipo
compatibile con Number.

Creiamo la classe di Main per il test:

public class Main {
public static void main(String [] args) {
Statistica <Integer>s;
= new Statistica(new Integer[]{10,20,30,40,50});
System.out.println("Media= "+s.getMedia());

java version "1.8.0_31"
Java(TM) SE Runtime Environment (build 1.8.0_31-bl13)
Java HotSpot(TM) 64-Bit Server VM (build 25.31-b07, mixed mode)

Note: Main.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
Media= 30.0

Codice

Metodi generici

Un metodo € detto generico quando accetta parametri di diversi Data Type su cui
esegue lo stesso algoritmo.

Se non vi fosse la possibilita di scrivere il metodo in forma generica, per adempiere
allo stesso scopo si dovrebbe ricorrere al meccanismo dell'overloading dei metodi,
che comporta la necessita di scrivere tanti metodi che eseguono lo stesso compito
su tipi di dato differenti.

Sintassi:

modificatore <parametri> tipoDiRitorno nomeMetodo(attributi){

//corpo}
201

https://replit.com/@RolandoSucco/Limite-dei-parametri-generics#Main.java

Prima del tipo di ritorno, si scrivono dentro le parentesi angolari < > la lista dei
parametri generici separati dalla virgola (.)

Esempio:

public static <E extends Number> void print(E[] a) {
for (E e : a)

System.out.print(e + " ");

Con questo metodo si pud stampare un array di qualsiasi tipo.

public class Main {
public static void main(String[] args) {
Integer[] a ={ 1, 2, 3, 4 };
Double[] b = { 1.4, 2.5, 3.6, 4.7 };

System.out.println("un array di interi ");
print(a);
System.out.println("un array di double ");
print(b);
}
public static <E> void print(E[] a) {
for (E e : a)
System.out.print(e + " ");
System.out.println();

¥

Output:

un array di interi
1 23 8

un array di double
1.4 2.5 3.6 4.7

Consideriamo il metodo generico per terminare il massimo tra tre parametri:
202

public static <T extends Comparable<T>> T max(T a, T b, T c) {
T tmp;
tmp = a;
if (b.compareTo(tmp) > 0) {
tmp = b;

}

if (c.compareTo(tmp) > 0) {
tmp = c;
}

return tmp;

Nel listato il metodo max che ha, nella sezione dei parametri di tipo formali. Un
parametro di tipo T che estende (extends) un'interfaccia generica di tipo
Comparable. Se si devono estendere piu classi o piu interfacce (nei generici la
keyword extends si usa anche per le interfacce) occorre utilizzare il carattere &.

Codice

Costruttore Generico

Un costruttore di una classe pud essere generico anche se la sua classe non lo &.
Ad esempio possiamo inserire nella classe Contenitore un costruttore
parametrizzato:

class Contenitore {
private Obiect t;

<T> Contenitore(T t){
this.t=t;

}
}

La dichiarazione del parametro T avviene tra il modificatore di accesso e la
dichiarazione del costruttore.

Creiamo una classe vuota e una di prova.

class ClasseVuota {

¥

203

https://replit.com/@RolandoSucco/Metodi-gerici#Main.java

i} public class Main {

2 public static void main(String[] args) {

3 Contenitore a = new Contenitore("Ciao mondo");

4 System.out.println(a.getT());

5 Contenitore b = new Contenitore(true);

6 System.out.println(b.getT());

7 Contenitore c = new Contenitore(new ClasseVuotal());
8 System.out.println(c.getT());

9

java version "1.8.0_31"
Java(TM) SE Runtime Environment (build 1.8.0_31-b13)
Java HotSpot(TM) 64-Bit Server W (build 25.31-b®7, mixed mode)

Ciao mondo
true
ClasseVuota@4aaz98b7

Codice

Interfacce generiche

Si possono realizzare anche interfacce generiche:

interface Mialnterfaccia<T>{
public void mioMetodo(T t);
}

Il metodo & stato solo dichiarato e sara implementato all'interno di una classe che
implementa l'interfaccia.

class MiaClasse <T> implements MiaInterfaccia<T>{
public void mioMetodo(T t){
System.out.println(t);

}
}

Se una classe implementa un'interfaccia generica allora anche la classe deve essere
generica, e deve avere lo stesso numero di Type parametri e questi devono essere
compatibili con quelli dell'interface.

204

https://replit.com/@RolandoSucco/Costruttore-Generico#Main.java

La classe Test:

public class Main {
public static void main(String[] args) {
MiaInterfaccia<String> a = new MiaClasse<>();
MiaInterfaccia<Integer> b = new MiaClasse<>();

a.mioMetodo("java");
b.mioMetodo(8);

}

Codice

L'INTERFACCIA COMPARABLE

Abbiamo visto che la classe Arrays del package java.util, definisce il metodo statico

sort in grado di ordinare un array di valori primitivi o di oggetti, l'istruzione:

Arrays.sort(unArray);

ordina gli elementi dell'intero array in senso crescente.

import java.util.*;
public class Main {
public static void main(String[] args) {
int[] interi={5,7,8,9,1,3,2,10};
String[] lista={"pane","pasta","acqua","frutta"};
System.out.println("array di numeri interi non ordinato");
System.out.println(Arrays.toString(interi));
System.out.println("array di stringe non ordinato");

System.out.println(Arrays.toString(lista));
Arrays.sort(interi);
Arrays.sort(lista);
System.out.println("array di numeri interi ordinato");
System.out.println(Arrays.toString(interi));
System.out.println("array di string ordinato");
System.out.println(Arrays.toString(lista));

205

https://replit.com/@RolandoSucco/Interfaccia-Generica#Main.java

}
}

Se si vuole ordinare un array di oggetti con Arrays.sort, I'oggetto deve implementare
l'interfaccia Comparable.

L'interfaccia Comparable contiene l'intestazione del solo metodo compareTo, che
deve essere quindi definito per ogni classe che implementi l'interfaccia:

public int compareTo(Object a)

L'interfaccia consente di specificare come un oggetto vada confrontato con un altro

definendo quando uno dei due "viene prima", "viene dopo" o "& uguale" all'altro. Il
metodo compareTo dovra restituire:

e un numero negativo, se l'oggetto sul quale &€ chiamato "viene prima" del
parametro dell’altro;

e zero, se l'oggetto sul quale &€ chiamato "é uguale" al parametro dell’altro;

e un numero positivo, se l'oggetto sul quale & chiamato "viene dopo" il
parametro dell’altro.

A partire da java 5.0 l'interfaccia Comparable € di tipo parametrico:

public interface Comparable<T> {
int compareTo(T other),

}

Il parametro specifica il tipo degli oggetti che una certa classe accetta per fare
confronti; di solito si tratta della stessa classe.

Il vantaggio & che con la genericita non c’é bisogno di usare un cast per convertire
un parametro di tipo Object nel tipo desiderato.

Come esempio, si consideri la classe persona

public class Personaf{

206

private String nome;

private String cognome;

public Persona(String cognome, String nome){
this.nome=nome;
this.cognome=cognhome;

}
public String toString(){

return cognome+"; "+nome ;

E si vuole ordinare in modo naturale cognome nome.

import java.util.*;
public class Persona implements Comparable<Persona>{
private String nome;
private String cognome;
public Persona(String cognome, String nome){
this.nome=nome;
this.cognhome=cognome;
}
public String toString(){
return cognome+"; "+nome ;
}
@Override
public int compareTo(Persona o) {
if(cognome.compareTolgnoreCase(o.cognome)==0)
return nome.compareTo(o.nome);

}

return cognome.compareToIgnoreCase(o.cognome);

La classe Test:

public class Main {

207

public static void main(String[] args) {
Persona[] persone=new Personal[4];

persone[@]=new Persona("Fantozzi", "Ugo");

persone[1]=new Persona("Fantozzi","Pina");

persone[2]=new Persona("Rossi","Mario");

persone[3]=new Persona("Bianchi","Anna");
System.out.println("array di persone ordinato");

Arrays.sort(persone);

for(Persona p:persone)

System.out.println(p);

array di persone ordinato
Bianchi; Anna

Fantozzi; Pina

Fantozzi; Ugo

Rossi; Mario

I

Codice

L'INTERFACCIA COMPARATOR

Quando si implementa Comparable si sta definendo un ordinamento naturale
infatti si scrive all'interno della classe un ordinamento. E’ possibile specificare
solo un criterio di ordinamento. Quando si ha bisogno di un ordinamento
particolare (o di pil di un ordinamento) allora si usa Comparator. E il caso di
persone che si potrebbero voler ordinare non solo per cognome e nome ma
anche per eta, per altezza.

208

https://replit.com/@RolandoSucco/Comparable#Main.java

L'interfaccia Comparator

definisce un solo metodo:

public interface Comparator<T>{

int compare(T o1, T 02);

}

L'interfaccia Comparator deve essere implementata in una classe distinta, dalla
classe degli oggetti da comparare. Questo significa che & possibile creare piu classi
per definire un numero arbitrario di criteri di comparazione alternativi o comunque
piu particolari rispetto all’ordinamento “naturale” espresso tramite Comparable.

Riprendiamo la classe Persona aggiungendo come attributo I'anno di nascita:

import java.util.*;
public class Persona implements Comparable<Persona>{
private String nome;
private String cognome;
private int annoNascita;
public Persona(String cognome, String nome,int
annoNascita){
this.nome=nome;
this.cognome=cognome;
this.annoNascita=annoNascita;

}
public String toString(){

return cognome+"; "+nome+" ; "+annoNascita ;

}
public int getAnnoNascita() {

return annoNascita;

}

@Override

209

public int compareTo(Persona o) {
if(cognome.compareTolgnoreCase(o.cognome)==0){
return nome.compareTo(o.nome);

}

return cognome.compareToIgnoreCase(o.cognome);

La classe per il confronto

import java.util.Comparator;
public class ConfrontaAnno implements Comparator<Persona> {
@Override
public int compare(Persona personal, Persona persona2) {
int r;
if (personal.getAnnoNascita() < persona2.getAnnoNascita()) {
= +1;
} else if (personal.getAnnoNascita() >
persona2.getAnnoNascita()) {
r=-1;
} else {

E la classe Main:

import java.util.*;
public class Main {
public static void main(String[] args) {
Persona[] persone=new Personal[4];
persone[@]=new Persona("Fantozzi","Ugo",1945);
persone[1]=new Persona("Fantozzi","Pina",1952);
persone[2]=new Persona("Rossi", "Mario",2001);
persone[3]=new Persona("Bianchi","Anna",2000);
System.out.println("array di persone ordinato per cognome

nome");
Arrays.sort(persone);
for(Persona p:persone)
System.out.println(p);
System.out.println("array di persone ordinato per anno di
nascita");
Arrays.sort(persone,new ConfrontaAnno());
for(Persona p:persone)
System.out.println(p);

array di persone ordinato per cognome e nome
Bianchi; Anna ; 2000

Fantozzi; Pina ; 1952

Fantozzi; Ugo ; 1945

Rossi; Mario ; 2001

array di persone orxrdinato per anno di nascita
Rossi: Mario : 2001

Bianchi; Anna ; 2000

Fantozzi; Pina ; 1952

Fantozzi; Ugo ; 1945

Codice

211

https://replit.com/@RolandoSucco/Comparator#Main.java

Collection

In Java, la lunghezza di un array non pud essere cambiata. Per esempio, se si scrive
un programma che registra in un array i prodotti presenti in un magazzino. Si
potrebbe chiedere all'utente il numero di prodotti da memorizzare e poi creare l'array
utilizzando la seguente istruzione:

Prodotto[] prodotti = new Prodotto[numeroProdotti];

Ma cosa accade se l'utente inserisce numeroProdotti ma poi decide d'inserire un
altro prodotto?

Indice

prodotti

Mela Pera Pane Pasta

Non esiste alcuna possibilita d'incrementare le dimensioni dell'array. Per fare questo
si deve creare un nuovo array piu grande:

Indice

tmp
copiare gli elementi dall'array originale al nuovo array
Indice
prodotti
Mela Pera 3 Pane 5 Pasta

Indice

tmp

Mela Pera Pane Pas

e poi rinominare il nuovo array come prodotti. Per esempio, le seguenti istruzioni
raddoppiano le dimensioni dell'array:

212

class Main {
static int inseriti = 0;
static Scanner tastiera = new Scanner(System.in);

public static void main(String[] args) {
System.out.println("Inserisci il numero di prodotti");
int numeroProdotti = tastiera.nextInt();
tastiera.nextLine();
Prodotto[] prodotti = new Prodotto[numeroProdotti];
for(int i=0;i<prodotti.length;i++)
prodotti=inserisci(prodotti);
System.out.println("lista
prodotti\n"+Arrays.toString(prodotti));
prodotti=inserisci(prodotti);
System.out.println("Nuova lista
prodotti\n"+Arrays.toString(prodotti));

public static Prodotto[] inserisci(Prodotto[] p) {
System.out.println("Inserisci Prodotto");
String nome = tastiera.next();
if (inseriti < p.length) {
p[inseriti] = new Prodotto(nome);
inseriti++;
else {
Prodotto[] tmp = new Prodotto[2 * p.length];
for (int 1 = @; i < p.length; i++)
tmp[i] = p[i];
tmp[inseriti] = new Prodotto(nome);
p = tmp;
inseriti++;
}

return p;

Inserisci il numero di prodotti
2

Inserisci Prodotto

Mela

Inserisci Prodotto

Pera

lista prodotti

[Mela, Pera]

Inserisci Prodotto

Pane

Nuova lista prodotti
[Mela, Pera, Pane, null]

Codice

Per andare oltre questo limite, Java mette a disposizione, nel framework collection
(JFC) una serie strumenti che consentono di gestire liste di oggetti di lunghezza
variabile. In Java si hanno due concetti distinti:

1.Collection : un gruppo di singoli elementi

2. Map: un gruppo di coppie di oggetti chiave-valore

Collection<T>

Costituisce l'interfaccia piu generica della libreria Java che contiene le classi per le
collezioni. Questa interfaccia descrive le operazioni di base che devono essere
implementate da tutte le classi di tipo collezione. Ci sono molte classi predefinite che
implementano l'interfaccia Collection<T> ed e possibile definirne di nuove. Un
metodo scritto per lavorare su un parametro di tipo Collection<T> funzionera anche
con tutte queste classi. Inoltre, i metodi dell'interfaccia Collection<T> garantiscono la
possibilita di utilizzare contemporaneamente diverse classi di tipo collezione.

214

https://replit.com/@RolandoSucco/RaddoppioArray#Main.java

<<interface>>
Collection <<interface>>
Map
£
< <interface>> <<interface>> <<interface>> < <interface>>
Set List Queue SortedMap

A
A\

‘JI .II
el

<<interface> >
SortedSet

Collection: nessuna ipotesi su elementi duplicati o relazioni d'ordine

List: introduce l'idea di sequenza

Set: introduce l'idea di insieme di elementi quindi senza duplicati

SortedSet: Insieme ordinato

Map: introduce il concetto di mappa cioé di insieme che associa chiavi
(identificatori univoci) a valori

Il collections framework (package java.util) & costituito dai seguenti componenti
architetturali:

1.

interfacce, rappresentate dai tipi di dati astratti che modellano le strutture di
dati quali per esempio: Set, List, Queue, Map e Deque,

. le classi concrete che realizzano le interfacce: HashSet, ArrayList, HashMap,

TreeSet, TreeMap, LinkedList. LinkedHashSet. LinkedHashMap

algoritmi, rappresentati dalle operazioni che possiamo effettuare sulle
strutture dati, come: ricerca (searching), ordinamento (sorting), mescolamento
(shuffling) implementati in appositi metodi statici della classe
java.util.Collections

costrutti di attraversamento delle collezioni, rappresentati dal costrutto for
avanzato e da un oggetto definito iteratore (lterator).

215

Implementazioni
Interfacce - - -
Hash Table | Resizable Array | Balanced Tree | Linked List
Set HashSet TreeSet
List ArrayList LinkedList
Map HashMap TreeMap

Sono presenti almeno due implementazioni per ogni interfaccia:
Implementazioni primarie HashSet ArrayList HashMap
TreeSet e TreeMap implementano SortedSet e SortedMap

COSTRUTTORI

Nonostante non sia espressamente richiesto dall'interfaccia, qualunque classe che
implementi l'interfaccia Collection<T> dovrebbe avere almeno due costruttori:

1. un costruttore senza argomenti che crea un oggetto di tipo Collection<T>
vuoto

2. un costruttore con un parametro di tipo Collection<? extends T> che crea un
oggetto di tipo Collection<T> contenente gli stessi elementi dell'argomento.

Un'interfaccia non si pud istanziare, ecco perché bisogna istanziare una delle classi
che implementano l'interfaccia:

'ArrayList() o LinkedList().

Tale istanza pu0 cambiare la propria lunghezza durante I'esecuzione del programma.
La classe ArrayList si basa comunque su array. Di fatto, per estendere la capacita

del suo array, ArrayList utilizza la tecnica utilizzata precedentemente per estendere
I'array prodotti.

Collection<E> list = new ArrayList<>();

216

La classe LinkedList, € sviluppata avvalendosi della struttura di dati di tipo lista
concatenata. Una lista concatenata € composta da un certo numero di nodi,
ciascuno dei quali viene creato in runTime e contiene un riferimento al nodo
successivo.

Nodo Nodo Nodo

Valore

Valore

Lista Concatenata
Alcune liste concatenate, poi, soddisfano anche la seguente proprieta:

Ciascun Nodo contiene anche un collegamento al Nodo precedente questa viene
detta lista doppiamente concatenata.

Nodo

Lista doppiamente concatenata.

Collection<E>lista= new LinkedList<>();

217

METODI

, £
@ Collection N
int size()

boolean isEmpty()

boolean contains(Object o)

boolean containsAll(Collection<7> ¢)
boolean equals(Object o)

boolean add(E elemento)

boolean addAll(Collection<? extends E>)
boolean remove(Object elemento)
boolean removeAll(Collection<?>)

void clear()

boolean retainAll(Collection<?> conservaElementi)
Ilterator iterator()

Object[] toArray()

T[] toArray(T[] a)

public int size() Restituisce il numero di elementi contenuti nell'oggetto chiamante.

public boolean isEmpty() Restituisce true se I'oggetto chiamante € vuoto, altrimenti
restituisce false.

public boolean contains(Object o) Restituisce true se l'oggetto chiamante contiene
almeno un'istanza di o.

public boolean containsAll(Collection<?> c¢) Restituisce true se I'oggetto
chiamante contiene tutti gli elementi in ¢. Per ogni elemento in ¢, il metodo usa
elemento .equals per determinare se elemento & contenuto nell'oggetto chiamante.

public boolean equals(Object altro) Questo € il metodo equals per la collezione,
non per gli elementi in essa contenuti. Sovrascrive il metodo equals ereditato.

218

public boolean add(E elemento) Garantisce che l'oggetto chiamante contenga
I'elemento specificato. Restituisce true se l'oggetto chiamante €& stato modificato
dalla chiamata. Restituisce false se l'oggetto chiamante non ammette elementi
duplicati e contiene gia elemento; inoltre, restituisce false anche se I'oggetto
chiamante non viene modificato per qualunque altro motivo.

public boolean addAll(Collection<? extends E> collezioneDaAggiungere)
Garantisce che l'oggetto chiamante contenga tutti gli elementi in
collezioneDaAggiungere. Restituisce true se I'oggetto chiamante e stato modificato
dalla chiamata, altrimenti restituisce false.

public boolean remove(Object elemento) Rimuove una singola istanza
dell'elemento specificato dall'oggetto chiamante. Restituisce true se l'oggetto
chiamante conteneva I'elemento, altrimenti restituisce false.

public boolean removeAll(Collection<?> collezioneDaRimuovere) Rimuove
dall'oggetto chiamante tutti gli elementi che sono contenuti anche in
collezioneDaRimuovere. Restituisce true se 'oggetto chiamante & stato modificato,
altrimenti restituisce false.

public void clear() Rimuove tutti gli elementi dall'oggetto chiamante.

public boolean retainAll(Collection<?> conservaElementi) Mantiene nell'oggetto
chiamante tutti gli elementi contenuti anche nella collezione conservaElementi. In
altre parole, rimuove dall'oggetto chiamante tutti gli oggetti non contenuti nella
collezione conservaElementi. Restituisce true se l'oggetto chiamante é stato
modificato dalla chiamata, altrimenti restituisce false.

Le caratteristiche dell'interfaccia Collection:

* non definisce l'ordine in cui sono memorizzati gli elementi

* non definisce se ci possono essere elementi duplicati

* non puo contenere tipi primitivi ma solamente oggetti.

Per inserire tipi primitivi & necessario effettuare il boxing. Dalla versione 1.5 di Java,
il boxing viene fatto automaticamente (si parla di autoboxing).

Nell'lesempio usiamo la Classe ArraylList ma lo stesso funziona con La classe
LinkedList

219

import java.util.Arraylist;

import java.util.Collection;

import java.util.LinkedList;

public class Main {

public static void main(String args[]) {

Collection<String> list = new ArraylList<>();
System.out.println(String.format("%40s %25s %35s",

"Istruzione", "Lista", "size"));
System.out.println(String.format("%s",

stampalist("List<String> list = new ArraylList<>();", list);

list.add("Arance");

stampalist("list.add(\"Arance\");", list);

list.add("Pere");

stampalList("list.add(\"Pere\");", list);

list.add("Mele");

stampalist("list.add(\"Mele\");", list);

list.add("Melone");

stampalist("list.add(\"Melone\");", list);

list.add("Mele");

stampalList("list.add(\"Mele\");", list);

list.remove("Mele");

stampalist("list.remove(\"Mele\");", list);
Collection<String>lista= new LinkedList<>(1list);

stampalist("Collection<String>lista= new LinkedList<>(list);",
lista);

list.clear();
stampalist("list.clear();", list);

}

private static void stampalist(String a, Collection<String>
list) {
System.out.println(String.format("%40s %30s %30s ", a, list,
list.size()));

}

new Arraylist<>();
list.add("Axrance"); [Arance]
list.add("Pexe"); [Arance, Perel]
list.add("Mele"); [Arance, Pere, Mele]
list.add("Melone"); [Arance, Pere, Mele, Melone]
list.add("Mele"); [Arance, Pere, Mele, Melone, Mele]
list.remove("Mele"); [Arance, Pere, Melone, Mele]
Collection<String>lista= new LinkedList<>(list); [Arance, Pere, Melone, Mele]
list.cleax(); [1

Codice:

221

https://replit.com/@RolandoSucco/Esempio-Collection#Main.java

Interfaccia List

@ Collection
int size()

boolean isEmpty()

boolean contains(Object 0)

boolean containsAll(Collection<?> ¢)
boolean equals(Object o)

boolean add(E elemento)

boolean addAll(Collection<? extends E> ¢)
boolean remove(Object elemento)
boolean removeAll(Collection<?> ¢)

void clear()

Ilterator iterator()
Object[] toArray()
T[] toArray(T[] a)

boolean retainAll(Collection<?> conservaElementi)

A

@ List

void add(int indice, E nuovoElemento)

E get(int indice)

E set(int indice, E nuovoElemento)

E remove(int indice)

int index0f(Object o)

int lastindex0f(Object o)

List<E> subList(int dalndice, int alndice)
Listlterator<E> listlterator()
Listlterator<E> listlterator(int indice)

boolean addAll(int indice, Collection<? extends E> c)

L'interfaccia List estende l'interfaccia Collection con I'aggiunta di alcuni metodi che

operano con indici ed ha le seguenti caratteristiche:

222

* gli oggetti sono ordinati in base all'ordine di inserimento
* puo contenere duplicati

« consente di aggiungere elementi specificando l'indice (ad es. € possibile inserire un
elemento nella posizione 5)

e consente di ottenere gli elementi specificando l'indice

Metodi una aggiunta ai metodi di Collection

public void add(int indice, E nuovoElemento) Inserisce nuovoElemento alla
posizione indice nella lista di elementi dell'oggetto chiamante. L'elemento che si
trovava alla posizione indice e tutti i successivi vengono spostati di una posizione.

public boolean addAll(int indice, Collection<? extends E>
collezioneDaAggiungere) Inserisce tutti gli elementi di collezioneDaAggiungere
nella lista di elementi delloggetto chiamante a partire dalla posizione indice.
L'elemento originariamente alla posizione indice e i successivi vengono spostati piu
avanti. Gli elementi sono aggiunti nello stesso ordine in cui sono forniti da un
iteratore di collezioneDaAggiungere.

public E get(int indice) Restituisce I'elemento indicato dall'indice.

public E set(int indice, E nuovoElemento) Imposta I'elemento alla posizione indice
a nuovoElemento. Viene restituito I'elemento che si trovava originariamente in quella
posizione.

public E remove(int indice) Rimuove l'elemento alla posizione indice dell'oggetto
chiamante. Sposta gli elementi successivi a sinistra di una posizione (sottrae 1 ai
loro indici). Restituisce I'elemento rimosso.

public int index0f(Object obiettivo) Restituisce I'indice del primo elemento uguale
a obiettivo. Utilizza il metodo equals dell'oggetto obiettivo per verificare
l'uguaglianza. Restituisce -1 se obiettivo non viene trovato.

public int lastindex0f(Object obiettivo) Restituisce l'indice dell'ultimo elemento

uguale a obiettivo. Utilizza il metodo equals dell'oggetto obiettivo per verificare
l'uguaglianza. Restituisce -1 se obiettivo non viene trovato.

223

public List<E> subList(int dalndice, int alndice) Restituisce una vista degli
elementi alle posizioni comprese tra dalndice a alndice dell'oggetto chiamante;
I'oggetto alla posizione dalndice € incluso, quello alla posizione alndice (se presente)
e escluso. La vista € composta di riferimenti all'oggetto chiamante; le modifiche alla
vista quindi modificano potenzialmente I'oggetto chiamante. L'oggetto restituito e di
tipo List<T>, ma non & necessario che sia dello stesso tipo dell'oggetto chiamante.
Se dalndice coincide con alndice, viene restituito un oggetto List<E> vuoto.

Listlterator<E> listlterator() Restituisce un iteratore per l'oggetto chiamante (gli
iteratori per le collezioni sono trattati successivamente).

Listiterator<E> listlterator(int indice) Restituisce un iteratore per I'oggetto
chiamante che parte da indice. Il primo elemento restituito dall'iteratore & quello alla
posizione indice.

<<Type>>
List<E>

tget(index:int): E
+set(index:int,elem:E): E

LinkedList<E> ArraylList<E>

taddFirsti(elem:E): voad
+addLast(elem:E): void

+removeFirst(): E
sremovelast(): F Linterfaccia List e le classi che la implementono.

La classe ArraylList realizza l'interfaccia List mediante un array, mentre la classe
LinkedList realizza l'interfaccia List usando la struttura lista concatenata. Aggiungere
e rimuovere elementi in una lista concatenata € un'operazione efficiente. Visitare in
sequenza gli elementi di una lista concatenata € efficiente, ma accedervi in ordine
casuale non lo é.

public class Main {

224

public static void main(String args[]) {
List<Integer> list = new LinkedList<>();
System.out.println(String.format("%40s %25s %35s %15s ",

"Istruzione”, "Lista", "size","restituito"));
System.out.println(String.format("%s",

stampalList("List<Integer> list = new LinkedList<>();",
list,"[]");

String b=""+list.add(3);
stampalist("list.add(3);", list,b);
b=""+1list.add(4);
stampalList("list.add(4);", list,b);

list.add(1,5);
stampalist("list.add(1,5);", list,"void");
list.add(3,5);
stampalist("list.add(3,5);", list,"void");
b=""+list.remove(new Integer(5));
stampalList("list.remove(new Integer(5);", list,b);
b=""+ list.remove(1l);
stampalist("list.remove(1);", list,b);
b=""+ list.get(1);
stampalList("list.get(1);", list,b);
b=""+ list.set(0,11);
stampalList("list.set(0,11);", list,b);
List<Integer> lista = new ArraylList<>(list);
stampalist("List<Integer> lista = new ArraylList<>(list)",

lista,lista.toString());

list.clear();

stampalList("list.clear();", list,"void");

private static void stampalist(String a, List<Integer>
list,String b) {
System.out.println(String.format("%40s %30s %30s %10s "
list, list.size(),b));
}

Codice

Output:

Istruzione i i restituif

List<Integer> list = new LinkedList<>();
list.add(3);
list.add(4);

list.add(1,5);

list.add(3,5);
list.remove(new Integer(5);
list.remove(l1);
list.get(1);
list.set(0,11);

List<Integer> lista = new Arraylist<>(list)
list.clear();

MMNRNWEBWNRER O

@

La classe ArrayList<E>

La classe ArrayList del Framework JCF implementa l'interfaccia List mediante un
array dinamico (i cui elementi possono aumentare o diminuire a runtime), che
consente l'accesso in tempo costante a qualunque elemento a partire dal suo indice.
Ogni oggetto di tipo ArrayList ha:

e una capacity che rappresenta lo spazio allocato per contenere gli elementi
dell'array

e una size che rappresenta il numero di elementi che esso effettivamente
contiene.

Quando il numero di elementi aggiunti supera la capacita dell'array, quest'ultima
viene automaticamente incrementata e lo stesso array viene ricreato.

Come tutte le altre classi del JCF, la classe ArrayList & parametrica.

Quando si crea un oggetto della classe ArrayList<E>, occorre specificare il tipo dei
suoi elementi, che andra a sostituire il parametro di tipo, E. Ad esempio:

ArrayList<String> lista= new ArrayList<>();

ArrayList<Prodotto> listaProdotti= new ArrayList<>();

226

https://replit.com/@RolandoSucco/Esempio-List#Main.java

L'unico vincolo posto al tipo d’elemento & che non pud essere un tipo primitivo, come
int (ma puod essere la corrispondente classe involucro, Integer).

Le caratteristiche di un ArrayList sono:

« €& un array ridimensionabile, dinamicamente. Cresce le sue dimensioni per
accogliere nuovi elementi e riduce le dimensioni quando gli elementi vengono
rimossi.

e Utilizza internamente un'array per memorizzare gli elementi, permette di

recuperare gli elementi dal loro indice.

Consente valori duplicati e nulli.

Mantiene I'ordine di inserimento degli elementi.

Non € possibile creare un ArrayList di tipi primitivi & necessario utilizzare tipi
boxed come Integer, Character, Boolean etc.

e Non é sincronizzato. Se piu thread tentano di modificare un ArrayList allo
stesso tempo, il risultato finale sara non deterministico. E necessario
sincronizzare esplicitamente l'accesso a un ArrayList se piu thread lo
modificheranno.

Costruttori

e public ArrayList<E>() crea un'istanza della classe ArrayList vuota in cui non &
specificata la capacita iniziale

e public ArrayList<E>(int initial Capacity) crea un'istanza della classe ArrayList in
cui é specificata la capacita iniziale

e public ArrayList(Collection<? extends E> «c) Costruisce un'arrayList
contenente gli elementi della raccolta fornita, nello stesso ordine in cui sono
memorizzati in essa. Questo oggetto di tipo ArrayList ha una capacita iniziale
pari al 110% della dimensione della raccolta copiata..

Metodi

La classe ArrayList implementa i metodi astratti definiti nelle interfacce Collection,
List e nelle interfacce Serializable e Cloneable,RandomAccess e delle classi astratte
AbstractCollection e AbstractList

227

—lrt
@ Collection "}

/ \‘
/ \
4 byt A—"‘.
. £ ., £}
©AbstractCollect|on @L:st \
Q & D
\ . ~
\\ . ’ \
:Es
©Abstractl.jst “3 ‘\. @RandomAccess @Cfoneabre @Senaﬁzabfe
\
\\\-_‘\\\ | " ” - -
~ | 2 * - -

Object clone(). Restituisce una copia superficiale dell'istanza di ArrayList .
void ensureCapacity(int minCapacity) Aumenta la capacita di questa istanza di
ArrayList , se necessario, per garantire che possa contenere almeno il numero di

elementi specificato dall'argomento di capacita minima.

int lastindexOf(Object o) Restituisce l'indice dell'ultima occorrenza dell'elemento
specificato in questo elenco o -1 se questo elenco non contiene I'elemento.

void sort(Comparator<? super E> c¢) Ordina questo elenco in base all'ordine
indotto dall'oggetto specificato Comparator.

void trimToSize() Ritaglia la capacita di questa istanza di ArrayList in modo che
corrisponda alla dimensione corrente dell'elenco.

228

La classe LinkedList<E>

La classe LinkedList, & sviluppata avvalendosi della struttura di dati di tipo lista
concatenata.

Impl t 2 :
ey Java LinkedList Class
Hierarchy
Exiends [:
Interface Iterable
Class Z‘}\
Collection
List Queue
i j}
Deque
i{:}h
LinkedList

Di seguito sono riportati alcuni punti chiave:

e LinkedList mantiene 'ordine di inserimento degli elementi.
e LinkedList pud avere valori duplicati e nulli.

229

* linkedList implementa Queue Deque interfacce Pertanto, pud anche essere usata
come Queue, Deque o Stack.

« LinkedList non & thread-safe. E necessario sincronizzare esplicitamente le
modifiche simultanee a LinkedList in un ambiente a piu thread

Costruttori

LinkedList() Costruisce una lista vuota.

LinkedList(Collection<? extends E> c¢) Costruisce una lista contenente gl
elementi della raccolta specificata, nell'ordine in cui vengono restituiti dall'iteratore
della raccolta.

Metodi

Usandola come Lista si usano tutti i metodi visti per List piu alcuni metodi che sono
propri della classe

230

O

2

)

9

S

=
.M

rﬁ.
E
dul

void addLast(E e)

void addFirst(E e)

E getLast()

E getFirst()

E removelast()

E removeFirst()

boolean removeFirstOccurrence(E e)
boolean removelLastOccurrence(E e)

231

-/ head

addLast appende il nodo alla fine della lista : lista.addLast(s)

[

addFirst crea un nodo e lo aggiunge all'inizio della lista: lista.addFirst(c)

=1 - - BE - BE B
- R

removeFirst elimina un nodo all'inizio della lista: lista.removeFirst()

removelast elimini il nodo alla fine della lista : lista.removelast()

Codice

232

https://replit.com/@RolandoSucco/Esempio-LinkedList#Main.java

E |getFirst(): Restituisceil primo elemento in questa lista.

getLast () : Restituisce |'ultimo elemento in questa lista.

anm
- DB B -

boolean removeFirstOccurrence(E e) Rimuove la prima occorrenza dell'elemento
specificato nella lista (quando si attraversa dalla testa alla coda).

boolean removelLastOccurrence(E e) Rimuove l'ultima occorrenza dell'elemento
specificato dalla lista (quando si attraversa dalla testa alla coda).

DB BB
- B B

True

True

removeFirstOccurrence(1) removeLastOccurrence(1)

233

ARRAYLIST E LINKEDLIST A CONFRONTO

La decisione se scegliere la classe ArrayList oppure la classe LinkedList, dipende
dalle performance e dalle operazioni piu frequentemente effettuate dall'applicazione
sviluppata. Una LinkedList € piu efficiente nei casi di inserimento e cancellazione
degli elementi, perché la lista viene modificata agendo solo sul riordinamento dei
collegamenti tra i nodi, un ArrayList lo € nelle operazioni di accesso e ottenimento
degli elementi tramite 'indicizzazione, perché si procede in modo arbitrario
(direttamente alla posizione indicata) e non sequenziale.

Vantaggi

« Semplicita di gestione » Gestione statica del numero degli
» Accesso diretto agli elementi elementi
» Difficolta delle operazioni di inseri-
mento e cancellazione di elementi
con criteri di ordinamento

Gestione dinamica del numero de-
gli elementi

Facilita nelle operazioni di inseri-
mento e cancellazione di elementi

Maggiore complessita di gestione
rispetto all’array

Struttura ad accesso strettamente
sequenziale

anche in presenza di criteri di ordi-
namento

L'interfaccia lterator<T>

Iterator & un'interfaccia utilizzata del framework Collections che permette di iterare
su una collezione. Qualunque classe implementi l'interfaccia Collection<T> offre |l
metodo iterator(), la chiamata al metodo iterator() sulla collezione utilizzata, ne
restituisce un'implementazione concreta.

L'iteratore si pud definire come un cursore che seleziona in maniera sequenziale gli
elementi della collezione.

L'interfaccia Iterator<T> fa parte del package java.util.

234

Metodi

boolean hasNext() ritorna true se la

| collezione ha un successivo elemento.
Ite ra tor Genera un'eccezione

NoSuchElementException se non
esiste l'elemento successivo.

b 00 I ean h as N e Xt () T next() ritorna il successivo elemento
T next () della collezione.

void remove () void remove() rimuove [ultimo

elemento ritornato dall'iteratore che
deve essere usato solo durante un ciclo
sugli elementi, altrimenti Java genera I'eccezione

=1

Questo metodo pud essere chiamato solo una volta per ogni chiamata a next. Se la
collezione € stata modificata senza utilizzare remove, il comportamento dell'iteratore
non & specificato.

Genera una lllegalStateException se il metodo next non & ancora stato chiamato o
se il metodo remove é gia stato chiamato dopo l'ultima chiamata di next.

Genera una UnsupportedOperationException se l'operazione di rimozione non &
supportata da questo lterator<T>.

Tutte le eccezioni citate sono del tipo non controllato, quindi non & necessario
gestirle in un blocco catch o dichiararle in una clausola throws.

L'eccezione NoSuchElementException appartiene al package java.util, che deve
essere quindi importato se il codice utilizza questa classe. Tutte le altre eccezioni
appartengono al package java. lang e quindi non richiedono l'importazione di
package aggiuntivi.

| passi per iterare una lista sono:
1. creiamo un ciclo while: la condizione da verificare € hasNext() che ritorna true

finché non arriviamo all'ultimo elemento della lista
2. il metodo next/) ritorna I'elemento successivo

235

import java.util.Arraylist;
import java.util.Iterator;
import java.util.List;

public class Main {
public static void main(String[] args) {
List<Integer> numbers = new ArraylList<>();
numbers.add(13);
numbers.add(18);
numbers.add(25);
numbers.add(40);
System.out.println(" la lista contiene
System.out.println(numbers);
Iterator<Integer> numbersIterator = numbers.iterator();
while (numbersIterator.hasNext()) {
Integer num = numbersIterator.next();
if (num % 2 1= 0) {
numbersIterator.remove();
}
}

System.out.println(" la lista contiene
System.out.println(numbers);

la lista contiene
[13, 18, 25, 40]
la lista contiene

[18, 40]

I'interfaccia Listlterator<E>

L'interfaccia Listlterator<E> estende Iterator<T>. Un Listlterator<T> ha tutti i metodi
di un lterator<E>, piu altri che abilitano nuove funzionalita: un Listlterator<T> pud
muoversi lungo la lista degli elementi della collezione in entrambe le direzioni e offre
metodi, come set e add, che possono essere utilizzati per modificare gli elementi
della collezione. Un oggetto di tipo Listlterator & disponibile solo per gli oggetti di tipo
List.

Metodi

L]
L]
L]

M

@ Listiterator -

void add(E e)
void set(E e)
boolean hasPrevious()

E previous()
int nextindex() .

Int previousindex()

 void add(E e) aggiunge I'elemento indicato dal parametro nella lista corrente. Se
nella lista sono presenti altri elementi, I'elemento € inserito prima del successivo
elemento che sarebbe ritornato dal metodo next e dopo il precedente elemento che
sarebbe ritornato dal metodo previous.

+ void set(E e) modifica l'ultimo elemento ritornato dai metodi next o previous con
I'elemento specificato dal parametro e.

e boolean hasPrevious() ritorna true se la collezione ha un precedente
elemento. E previous() ritorna il precedente elemento della collezione.

e int nextindex() ritorna l'indice del prossimo elemento che sarebbe ritornato dal
metodo next.

e int previousindex() ritorna l'indice del precedente elemento che sarebbe
ritornato dal metodo previous.

237

CURSORI: Un oggetto di tipo Listlterator ha un cursore che rappresenta una sorta di
indicatore per la posizione dove literatore si trovera in un determinato momento
durante l'iterazione. Questa posizione non sara mai sull'elemento da processare, ma
sara sempre nel mezzo di due elementi.

Posizione imiziale di Listlterator ” D H H T
Dopo la chiamata di next ‘ D ‘ H R I T

Dopo I'msernmento di J ‘ D J | H | R 1 ‘

0 1 2 3

I

0 | 4

Per spiegare la Figura vediamo che cosa accade se invochiamo i seguenti metodi a
partire dal cursore posizionato all'indice 2:

- hasNext ritorna true perché c'e I'elemento C:
- hasPrevious ritorna true perché c'e I'elemento B:
- next ritorna I'elemento C:

238

- previous ritorna I'elemento B:
- nextlndex ritorna l'indice 2:
- previousindex ritorna Il'indice 1

add inserisce un elemento tra I'elemento C e I'elemento B e prima del cursore:
set modifica l'elemento C se prima é invocato il metodo next. Altrimenti
modifica I'elemento B se prima é invocato il metodo previous;

e remove elimina I'elemento C se prima € invocato il metodo next, altrimenti
elimina I'elemento B se prima & invocato il metodo previous.

ATTENZIONE | metodi set e remove agiscono sempre sull'elemento corrente
ritornato dal metodo next o previous, mentre il metodo add agisce sulla posizione
corrente del cursore.

import java.util.Arraylist;
import java.util.Iterator;
import java.util.List;

import java.util.ListIterator;

public class Main {
public static void main(String[] args) {
List<Integer> numbers = new ArraylList<>();
for(int i=1;i<6;i++)
numbers.add(i);
ListIterator<Integer> iteratore = numbers.listIterator();
int i=2;

while(numbers.size()!=1){
i--;

while (iteratore.hasNext()) {
iteratore.next();

if (i % 3== 0 && numbers.size()!=1){
iteratore.remove();
System.out.println(numbers);

239

while (iteratore.hasPrevious()) {
iteratore.previous();

if (i % 3== 0&&numbers.size()!=1){
iteratore.remove();
System.out.println(numbers);

240

Le Code

Bt

Una coda o queue € una sequenza finita di elementi in cui:

1. gli inserimenti possono avvenire soltanto alla fine della sequenza (all’estremita
detta back);

2. le rimozioni possono avvenire soltanto all'inizio della sequenza (all’estremita detta
front).

Una coda impone un ordine cronologico ai propri elementi: tra gli elementi presenti in
coda, il primo elemento che & stato accodato all'estremita back sara il primo
elemento ad essere rimosso, dall’estremita front; il secondo elemento che é stato
accodato sara il secondo ad essere rimosso; e cosi via. Questa proprieta, che
definisce le code, si chiama “First In, First Out” (FIFO), cioé: chi € entrato per
primo, uscira per primo.

241

interface
t extends Iterable o
l implements I
Collection
I I |
List Qu Set

e

Ileque

———

L'interfaccia Queue<E>

SortedSet

Queue specializza Collection introducendo l'idea di coda di elementi da sottoporre a

elaborazione

e ha una nozione di posizione (testa della coda)
e |'interfaccia di accesso si specializza:

o remove() estrae I'elemento "in testa" alla coda, rimuovendolo
o element () lo estrae senza rimuoverlo
Ognuno di questi metodi &€ presente in due formati differenti:

1. se I'operazione fallisce un formato lancia un'eccezione

242

2. l'altro restituisce un valore speciale (per esempio null o false).

In particolare quando parliamo di valore speciale ci riferiamo alla situazione in cui il
metodo restituisce o l'oggetto stesso appena aggiunto o recuperato, oppure un
booleano (come nel caso del metodo offer()). Quindi, a seconda dell'esigenza, lo
sviluppatore puo usufruire di un metodo piuttosto che di un altro.

Metodi

@ Queue

boolean add(E e)
boolean offer(E e)
E removel()

E poll()

E element()

E peek()

I metodo add(E e) se fallisce nell'aggiungere un elemento lancia una unchecked
exception.

I metodo offer(E e) inserisce un elemento ritornando true o false qualora
I'operazione di inserimento riesca oppure no.

I metodi remove() e poll() ritornano e rimuovono I'elemento che si trova in testa alla
coda. Nel caso in cui non ci sia niente da rimuovere nella coda, il metodo poll()
ritorna null, mentre remove() lancia un'eccezione. Il metodo poll() restituisce un
riferimento all'oggetto rimosso in caso di successo.

| metodi element() e peek() invece ritornano ma non rimuovono l'elemento che si
trova in testa alla coda.

Nel caso in cui non ci sia niente alla testa della coda, il metodo peek() ritorna null.
Mentre element() lancia un'eccezione. |l metodo peek() ritorna un riferimento
all'oggetto rimosso in caso di successo.

243

Tipo di operazione

Metodo che lancia

Metodo che ritorna

un’eccezione un valore speciale
Inserimento add(e) offer(e)
Rimozione remove() poll()
Recupero element () peek ()

In genere, le cose vengono usate nella modalita FIFO (first-in-first-out).

Altri tipi di code possono utilizzare regole di posizionamento differenti, ad esempio le
PriorityQueue che in cima alla coda avranno quegli elementi con una maggior

priorita di essere estratti.

L'interfaccia Queue viene implementata tramite le classi:

LinkedList: sviluppata avvalendosi della struttura di dati di tipo lista doppiamente
collegata, gia vista come implementazione del tipo List.

ArrayDeque: sviluppata avvalendosi della struttura di dati di tipo array dinamico che
cresce o decresce a seconda delle necessita. Inoltre, non ha restrizioni di capacita e
gli elementi null non sono ammessi

244

nserimento di Alice

Inserimento di Bob

Inserimento di Eve

Rimozione di Alice

java.util.Iterator;
java.util.LinkedList;
java.util.Queue;

Main {
(String[] args){
Queue<String> coda= LinkedList<>();
print(coda);

coda.add("Alice");
print(coda);
coda.add("Bob");
print(coda);
coda.add("Trudi");
print(coda);
coda.offer("Eve");
print(coda);
coda.offer("mallory");
print(coda);

System.out.println("Dalla coda esce "+coda.poll());
System.out.println("in coda ci sono "+coda.size()+" persone esse sono:");
Iterator<String> itera=coda.iterator();

(itera.hasNext())

System.out.println(itera.next());
while(!coda.isEmpty())
System.out.println("Dalla coda esce "+coda.poll());
System.out.println("in coda ci sono "+coda.size()+" persone");
}
public static void print(Queue coda){
System.out.println("in coda ci sono "+coda.size()+" persone "+coda);

coda 0@ pexsone []

coda ci 1 pexsone [Alice]

coda ci 2 persone [Alice, Bob]

coda ci 3 pexsone [Alice, Bob, Trudi]

coda ci 4 persone [Alice, Bob, Trudi, Eve]
coda ci 5 persone

Dalla coda Alice

in coda ci 4 persone esse SoOno:

Bob

Trudi

Eve

mallory

Dalla coda Bob

Dalla coda Trudi

Dalla coda Eve

Dalla coda mallory

in coda ci 0

Codice

La Classe PriorityQueue<E>

Un'implementazione di Queue definita dalla classe PriorityQueue, ordina i propri
elementi a seconda del proprio ordinamento naturale (definito mediante
I'implementazione dell'interfaccia Comparable) o a seconda di un oggetto
Comparator associato al momento della creazione. Attenzione che "usando un
Iterator per iterare su di essa, non & garantito che i suoi elementi vengono iterati
nell'ordine che ci si aspetta. Infatti per ragioni prestazionali, i suoi elementi sono
gestiti in background senza rispettare I'ordinamento, utilizzando una lista. Il consiglio
per iterare gli elementi ordinati € quello di usare un'istruzione come la seguente:

Arrays.sort(coda.toArray0));

246

https://replit.com/@RolandoSucco/Coda#Main.java

Dove coda e un reference a un oggetto PriorityQueue. Infatti abbiamo prima
trasformato in array la priority queue, e poi ordinato i suoi elementi mediante |l
metodo statico sort() della classe di utilita Arrays.

Costruttori:

1. PriorityQueue(): Crea un PriorityQueue con la capacita iniziale predefinita che
ordina i suoi elementi secondo il loro ordinamento naturale.

PriorityQueue<E> coda = new PriorityQueue<>();

2. PriorityQueue(Collection<E> c): crea un PriorityQueue contenente gli elementi
nella raccolta specificata.

PriorityQueue<E> coda= new PriorityQueue<>(Raccolta<E> c);

1. PriorityQueue(Comparator<E> comparator): crea un PriorityQueue con la
capacita iniziale predefinita che ordina i suoi elementi in base al comparatore
specificato.

PriorityQueue<E> coda = new PriorityQueue<>(Comparator<E> comparatore);

1. PriorityQueue(int initialCapacity) : crea un PriorityQueue con la capacita
iniziale specificata che ordina i suoi elementi in base al loro ordinamento
naturale.

PriorityQueue<E> coda = new PriorityQueue<>(int initialCapacity);

1. PriorityQueue(int initialCapacity, Comparator<E> comparator): crea un
PriorityQueue con la capacita iniziale specificata che ordina i suoi elementi in
base al comparatore specificato.

PriorityQueue<E> coda = new PriorityQueue(int capacity, Comparator<E> c);

247

1. PriorityQueue(PriorityQueue<E> c) : crea un PriorityQueue contenente gli
elementi nella coda di priorita specificata.

PriorityQueue<E> coda = new PriorityQueue(PriorityQueue<E> c);

1. PriorityQueue(SortedSet<E> c) : crea un PriorityQueue contenente gli
elementi nel set ordinato specificato.

PriorityQueue<E> coda = new PriorityQueue<>(SortedSet<E> c);

import java.util.Iterator;
import java.util.PriorityQueue;
import java.util.Queue;
public class Main {
public static void main(String[] args){
Queue<String> coda= new PriorityQueue<>();
System.out.println("in coda ci sono "+coda.size()+" persone" + coda);

coda.add("bob");

System.out.println("in coda ci sono "+coda.size()+" persone
coda.add("eve");

System.out.println("in coda ci sono "+coda.size()+" persone
coda.offer("trudy");

System.out.println("in coda ci sono "+coda.size()+" persone
coda.offer("mallory");

System.out.println("in coda ci sono "+coda.size()+" persone

coda.add("alice");

System.out.print("in coda ci sono "+coda.size()+" persone ");
System.out.println(coda);

System.out.println("L'estrazione avviene in ordine alfabetico, in base

compareTo()");
while(!coda.isEmpty())
System.out.println("Dalla coda esce "+coda.poll());

System.out.println("in coda ci sono "+coda.size()+" persone");

+ coda);

+ coda);

+ coda);

+ coda);

248

in coda ci sono © personel[]

in coda ci sono 1 persone [bob]

in coda ci sono 2 persone [bob, eve]

in coda ci sono 3 persone [bob, eve, trudy]

in coda ci sono 4 persone [bob, eve, trudy, mallory]

in coda ci sono 5 persone [alice, bob, trudy, mallory, eve]
L'estrazione avviene in oxdine alfabetico, in base al compareTo()
Dalla coda esce alice

Dalla coda esce bob

Dalla coda esce eve

Dalla coda esce mallory

Dalla coda esce trudy

in coda ci sono O persone

Costruiamo una coda di persone munite di un codice che ne determina la priorita.

public class Persona implements Comparable<Persona>{
private String nome;
private Codice codice;

public Persona(String nome, Codice codice){

this.nome=nome;
this.codice=codice;

public String toString(){
return nome +" Codice "+codice ;

}

@Override
public int compareTo(Persona o) {
return codice.compareTo(o.codice);

Il codice € inserito in una Enum

public enum Codice {

249

Rosso,Giallo,Bianco

import java.util.PriorityQueue;
import java.util.Queue;

public class Main {
public static void main(String[] args) {
Queue<Persona> coda = new PriorityQueue<>();
Codice c;
System.out.println("in coda ci sono
persone" + coda);

+ coda.

¢ = Codice.Bianco;

coda.add(new Persona("bob", c.Bianco));

System.out.println("in coda ci sono " + coda.size()
persone " + coda);

coda.add(new Persona("eve", c.Giallo));

System.out.println("in coda ci sono " + coda.size()
persone " + coda);

coda.offer(new Persona("trudi", c.Rosso));

System.out.println("in coda ci sono " + coda.size()
persone " + coda);

coda.offer(new Persona("mallory", c.Rosso0));

System.out.println("in coda ci sono " + coda.size()
persone " + coda);

coda.add(new Persona("alice", c.Giallo));

System.out.print("in coda ci sono " + coda.size() + persone
")

System.out.println(coda);

System.out.println("L'estrazione avviene in ordine alfabetico,
in base al compareTo()");

while (!coda.isEmpty())

System.out.println("Dalla coda esce " + coda.poll());

" + coda.size() +

System.out.println("in coda ci sono
persone");

}
}

ci sono @ persone[]
coda ci sono 1 persone [bob Codice Bianco]
coda ci sono 2 persone [eve Codice Giallo, bob Codice Bianco]
coda ci sono 3 persone [trudy Codice Rosso, bob Codice Bianco, eve Codice Giallo]
coda ci sono 4 persone [trudy Codice Rosse, mallory Codice Rosso, eve Codice Giallo, bob Codice Bianco]
coda ci sono 5 persone [trudy Codice Rosso, mallory Codice Rosso, eve Codice Giallo, bob Codice Bianco, alice Codice Giallo]
L'estrazione avviene in ordine alfabetice, in base al compareTo()
Dalla coda esce trudy Codice Rosso
Dalla coda esce malloxry Codice Rosso
Dalla coda esce alice Codice Giallo
Dalla coda esce eve Codice Giallo
Dalla coda esce bob Codice Bianco
in coda ci sono @

Codice

L'interfaccia Deque <E>

@ Deque

boolean offerfFirst(E e)

E removeFirst()

E removelast()

E pollFirst()

E pollLast()

E peekFirst()

E peeklLast()

boolean removeFirstOccurrence(E &)
boolean removelastOccurrence(E e)
void push(E e)

E pop()

Iterator descendinglterator()

L]
L]

e

-
L]

Interfacce Deque(che si pronuncia "deck") &€ una collezione lineare che supporta
I'inserimento e la rimozione dei suoi elementi da entrambe le estremita. Puo essere
quindi utilizzata come una coda FIFO o LIFO a seconda della necessita. Come per
Queue, le funzionalita di questa interfaccia sono duplicate per lanciare eccezioni o
ritornare valori speciali. La seguente tabella riassume i principali metodi definiti in
Deque.

251

https://replit.com/@RolandoSucco/CodaPrioritaria#Main.java

OPERATION m EXCEPTION METHOD | SPECIAL-RETURN METHOD

Front addFirst offerFirst
enqueue

Back addLast offerLast

Front removeFirst pollFirst
dequeue

Back removeLast pollLast

Front getFirst peekFirst
peek

Back getLast peekLast

Poiché l'interfaccia Deque estende l'interfaccia Queue i metodi ereditati da questa si
comportano come operazioni FIFO. Quindi chiamando:

e add o offer si inserisce un elemento in coda.

e remove o poll si rimuove un elemento dalla testa della coda.
e element o peek si visualizza I'elemento in testa alla coda.

Inserimento di
Alice Dalla Testa

Inserimento di
Bob Dalla Coda

Inserimento di
Eve Dalla Testa

Rimozione

Dalla Testa
E dalla Coda

252

Deque pud essere utilizzata come stack. Pertanto, include i metodi di stack, vale a
dire push e pop.

Deque pud essere implementata tramite le Classi concrete:

LinkedList: sviluppata avvalendosi della struttura di dati di tipo lista doppiamente
collegata, gia vista come implementazione del tipo Lista.

ArrayDeque: sviluppata avvalendosi della struttura di dati di tipo array dinamico che
cresce o decresce a seconda delle necessita. Inoltre, non ha restrizioni di capacita e
gli elementi null non sono ammessi.

La classe ArrayDeque<E>

Un ArrayDeque € un tipo speciale di array espandibile che ci consente di aggiungere
o rimuovere un elemento da entrambi i lati. Un'implementazione di ArrayDeque pu0
essere utilizzata come Stack (Last-In-First-Out) o Queue (First-In-First-Out).

Costruttori

ArrayDeque(): Costruisce un array vuoto con una capacita iniziale
sufficiente per contenere 16 elementi.

ArrayDeque(Collection<? extends E> c): Costruisce un Array
contenente gli elementi della raccolta specificata, nell'ordine in cui
vengono restituiti dall'iteratore della raccolta.

ArrayDeque(int numElements): Costruisce un array vuoto con una
capacita iniziale sufficiente per contenere il numero specificato di
elementi

import java.util.Deque;

import java.util.Iterator;

import java.util.ArrayDeque;

public class Main {
public static void main(String[] args){
Deque<String> coda=new ArrayDeque<>();

coda.add("alice");

coda.add("bob");

coda.add("trudi");

System.out.println("La prima della coda é&: "+coda.peek()+"

253

https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html#ArrayDeque()
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html#ArrayDeque(java.util.Collection)
https://docs.oracle.com/javase/7/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html#ArrayDeque(int)

"+coda);

System.out.println("carol salta la coda e diventa la prima: ");

coda.addFirst("carol");

System.out.println("La prima della coda e: "+coda.peek()+"
"+coda);

coda.offer("eve");

coda.offer("mallory");

System.out.println("in coda ci sono "+coda.size()+" persone
"+coda);

System.out.println("Dalla coda esce "+coda.poll()+ "+coda);
System.out.println(coda.pollLast()+" lascia la coda "+coda);
System.out.println("in coda ci sono "+coda.size()+" persone

esse sono: visualizzandole in ordine inverso");
Iterator<String> itera=coda.descendingIterator();

while(itera.hasNext())

System.out.println(itera.next());
while(!coda.isEmpty())
System.out.println("Dalla coda esce "+coda.poll());
System.out.println("in coda ci sono "+coda.size()+"
persone");

La prima della coda &: alice [alice, bob, trudi]

carol salta la coda e diventa la prima:

La prima della coda €: carol [carol, alice, bob, trudi]

in coda ci sono 6 persone [carol, alice, bob, trudi, eve, malloxy]
Dalla coda esce carol [alice, bob, trudi, eve, mallory]

mallory lascia la coda [alice, bob, trudi, eve]

in coda ci sono 4 persone esse sono: visualizzandole in orxdine inverso
eve

trudi

bob

alice

Dalla coda esce alice

Dalla coda esce bob

Dalla coda esce trudi

Dalla coda esce eve

in coda ci sono O persone

codice

Interface Set<E>

L'interfaccia iava.util.Set definisce il tipo di dato Insieme. Le caratteristiche di questa
collezione sono:

e non permette duplicati
e si perde il concetto di accesso posizionale ossia non si pud richiedere di
accedere all'elemento in posizione 10.

L'interfaccia Set non definisce alcun metodo aggiuntivo rispetto all'interface
Collection, l'unica differenza tra le interfacce Collection e Set consiste nel fatto che in
una raccolta che implementi Set non & consentita la presenza di elementi duplicati,
un vincolo che riguarda le specifiche del costruttore di default e del metodo add.

255

https://replit.com/@RolandoSucco/ArrayDeque#Main.java

'3
@ o :
int size()

boolean isEmpty()

boolean contains(Object o)

boolean containsAll(Collection<7?>)
boolean equals(Object o)

boolean add(E elemento)

boolean addAll(Collection<? extends E> c)
boolean remove(Object elemento)
boolean removeAll(Collection<7>)

void clear()

boolean retainAll{Collection<7> conservaElementi)
Iterator iterator()

Object[] toArray()

T[] toArray(T[] a)

Le operazioni possibili sono:

e test sulla presenza di un elemento;
e inserzione di una nuovo elemento:
e eliminazione di un elemento.

Metodi

boolean contains(Object) restituisce true se I'elemento é presente, false altrimenti.

boolean add(E element): inserisce l'elemento element, viene reso true se
I'elemento & stato aggiunto, false se era gia presente.

boolean remove (E element): rimuove I'elemento element se presente, viene reso
true se I'elemento € stato eliminato, false se non era presente.

boolean addAll(Collection c): aggiunge gli elementi della Collection ¢ se non
presenti, (implementando cosi una variante della unione), viene reso true se
I'insieme & stato modificato.

boolean removeAll(Collection c¢): rimuove gli elementi della Collection ¢ se
presenti. (implementando cosi una variante della differenza), viene reso true se
I'insieme & stato modificato.

256

boolean retainAll(Collection c): conserva solo gli elementi della Collection ¢ che
sono presenti, (implementando cosi una variante della intersezione), viene reso true
se l'insieme & stato modificato.

Inoltre, tra gli altri, vi sono i metodi: clear(), isEmpty(), size(), equals0), iterator(),
dall'ovvio significato.

Un'implementazione dell'interfaccia Set € data dalla classe HashSet.

La parola 'hash"si riferisce al fatto che la classe HashSet & implementata utilizzando
una tabella hash. Una tabella hash (o mappa hash) € una struttura dati che contiene
oggetti. Un oggetto € memorizzato in una tabella hash associandogli una chiave
(key} univoca. Una tabella hash per un dato tipo di chiave & composta da:

e un array (chiamato bucket array)
e una funzione hash h

| bucket array

Un bucket array per una tabella hash € un array A di lunghezza N. Ogni singola cella
di A é considerata come un «bucket» (secchio), cioé come un insieme delle coppie
chiave-valore. Il numero N definisce la capacita dell'array.

Se si considera che le chiavi sono dei numeri interi, uniformemente distribuiti
nell'intervallo [0, N - 1], allora questo bucket array & proprio quello che occorre per
implementare una tabella hash. Una entry e con chiave k & semplicemente inserita
nel bucket Alk] (Figura). In questo caso le ricerche, gli inserimenti e le cancellazioni
nel bucket array richiedono solo un tempo O(1).

Non sempre le chiavi sono interi nell'intervallo [0,N-1].

\ Y O Y v l Y Y v Y v
(k1,d) (k2,a) (k3,f) (k4,p) (k5,w) (k6,2) (k7,s)

257

Funzioni hash

La seconda parte della struttura di una tabella hash & la funzione hash h: che
trasforma ogni chiave k della mappa di origine in un numero intero compreso
nell'intervallo [0, N - 1]. Avendo a disposizione questa funzione il metodo del bucket
array puo essere applicato a chiavi arbitrarie. L'idea quella é di utilizzare il valore
della funzione hash. h(k), come indice nel bucket array, A, al posto della chiave k. In
altre parole, si memorizza la entry (k,v) nel bucket A(h(k)).

Naturalmente, nell'ipotesi che esistano due o piu chiavi aventi lo stesso valore hash,
allora due entry distinte saranno mappate nello stesso bucket in A. In questo caso si
dice che si verifica una collisione. Seguendo la convenzione di Java, per
determinare il valore di una funzione hash, h(k), sono necessari due passi:
1. il primo €& la trasformazione della chiave k in un numero intero, detto codice
hash;
2. il secondo € l'applicazione della cosiddetta funzione di compressione, ovvero

la trasformazione del codice hash ottenuto nel passo precedente in un numero
intero, compreso nell'intervallo ([0, N-1]), degli indici di un bucket array.

oggetti arbitrari

n

F D TR QOG> T %k
hash code

w2 =101 2 ..

funzione di compressione

012 .. N-1

258

La classe HashSet<E>

La classe HashSet implementa naturalmente tutti i metodi dell'interfaccia Set e non
aggiunge altri metodi, a parte i costruttori.

Costruttori
HashSet() Crea un nuovo HashSet vuoto

HashSet(Collection<? extends T> c¢) Crea un nuovo insieme contenente tutti gli
elementi di c. Se c & nuli, genera un'eccezione NullPointerException.

HashSet(int dimensioneiniziale) Crea un nuovo insieme vuoto della capacita
specificata. Se la dimensione iniziale € minore di 0, genera un'eccezione
lllegalArgumentException.

Sef<f>
& .."\'-,

HashSet<E> SortedSet<F>
+HashSet() +first(): E()
+HashSet(initial Capacity: int) tlast(): E

;'ﬁ‘s.
TreeSet<k=>
+TreeSet()

+TreeSet(elements: Collection<? extends E>)
+TreeSet(comparator: Comparator<? super E>)

import java.util.HashSet;

import java.util.Iterator;

259

import java.util.Set;
public class Main {
public static void main(String[] args) {

Set<Integer> sl = new HashSet<>();
sl.add(1);
sl.add(2);
System.out.println("sl : "+s1);
Set<Integer> s2 = new HashSet<>();
s2.add(1);
s2.add(3);
System.out.println("s2 : "+s2);
Set<Integer> union = unione(sl,s2);
System.out.println("unione : "+union);
Set<Integer> intersection = intersezione(sl,s2);
System.out.println("intersezione : "+intersection);

}

private static Set<Integer> unione(Set<Integer> sl, Set<Integer> s2) {
Set<Integer> res = new HashSet<Integer>(sl);

res.addAll(s2);

return res;

private static Set<Integer> intersezione(Set<Integer> sl, Set<Integer> s2)
Set<Integer> s3=new HashSet<>();
Iterator<Integer> a= sl.iterator();

while(a.hasNext()){
int i= a.next();
if(s2.contains(i))
s3.add(i);}
return s3;

L'interfaccia SortedSet<E>

L'interfaccia SortedSet rappresenta una collezione di elementi senza duplicati,
ordinati secondo un ordinamento ascendente naturale oppure secondo uno arbitrario
fornito mediante un oggetto comparatore (Comparator).

(@) sortedset j

Comparator<? super E> comparator()
SortedSet<E> subSet(E fromElement, E toElement)

SortedSet<E> headSet(E toElement)
SortedSet<E> tailSet(E fromElement)
E first()
E last()

Estende, di fatto, l'interfaccia Set fornendo i seguenti ulteriori metodi:

Comparator<? super E> comparator() ritorna I'oggetto comparatore utilizzato per
I'ordinamento degli elementi di un insieme. Se non & stato fornito alcun oggetto
comparatore, il metodo ritornera null.

E first() ritorna I'elemento di un insieme al primo posto nell'ordinamento.

E last() ritorna I'elemento di un insieme all'ultimo posto nell'ordinamento.
SortedSet<E> subSet(E fromElement, E toElement) ritorna un sottoinsieme di un
insieme formato dagli elementi compresi nel range indicato dal parametro
fromElement (incluso) e dal parametro toElement (escluso).

SortedSet<E> headSet(E toElement) ritorna un sottoinsieme di un insieme formato
dagli elementi che, secondo I'ordinamento, sono posti prima dell'elemento fornito dal
parametro toElement (escluso).

SortedSet<E> tailSet(E fromElement) ritorna un sottoinsieme di un insieme

formato dagli elementi che secondo l'ordinamento, sono posti dopo o a partire
dall'elemento fornito dal parametro fromElement (incluso).

261

La Classe TreeSet<E>

TreeSet, € un Set implementato interiormente come un albero di ricerca bilanciato.
Questa classe estende l'interfaccia SortedSet perché gli elementi vengono inseriti in
modo ordinato secondo un ordinamento naturale della classe o non naturale.

Di conseguenza gli elementi presenti nel TreeSet devono implementare l'interfaccia
Comparable o l'interfaccia Comparator. Nello specifico gli elementi inseriti in un
TreeSet formano un albero rosso/nero e indipendentemente dall'inserimento,
I'iterarotre restituisce gli oggetti in modo ordinato.

Costruttori

In TreeSet abbiamo a disposizione diversi costruttori, tra cui:
* public TreeSet(): Consente di creare un TreeSet vuoto;

« public TreeSet (Collection c): Consente di creare un TreeSet con gli elementi
contenuti nella Collection passata come argomento;

* public TreeSet (Comparator c): Consente di assegnare agli elementi da ordinare
una relazione d'ordine non naturale.

lterando con un iteratore su TreeSet, gli elementi verranno restituiti in maniera
ordinata.

Metodi

boolean add(E e) Aggiunge I'elemento specificato a questo insieme se non é gia
presente.

boolean addAll (Collection<? extends E> c) Aggiunge tutti gli elementi della
collezione specificata a questo set.

E ceiling(E e) Restituisce I'elemento minimo in questo set maggiore o uguale
all'elemento dato o null se non esiste un tale elemento.

void clear () Rimuove tutti gli elementi da questo set.

Object clone() Restituisce una copia superficiale di questa TreeSet istanza.

262

Comparator<? super E> comparator () Restituisce il comparatore usato per
ordinare gli elementi in questo set, o null se questo insieme usa l'ordinamento
naturale dei suoi elementi.

boolean contains (E e) Restituisce true se questo insieme contiene I'elemento
specificato.

Iterator<E> descendinglterator () Restituisce un iteratore sugli elementi in questo
set in ordine decrescente.

Navigableset<> descendingset () Restituisce una vista di ordine inverso degli
elementi contenuti in questo Set

E first() Restituisce il primo (piu basso) elemento attualmente in questo set.
boolean isEmpty() Restituisce true se questo insieme non contiene elementi.

Iterator<E> iterator () Restituisce un iteratore sugli elementi in questo set in ordine
crescente.

E last () Restituisce I'ultimo (il piu alto) elemento attualmente in questo set.

boolean remove (E e) Rimuove I'elemento specificato da questo set se € presente.
int size() Restituisce il numero di elementi in questo set (la sua cardinalita).
NavigableSet<E> tailSet (E fromElement, boolean inclusive) Restituisce una

vista della porzione di questo insieme i cui elementi sono maggiori di (0 uguali a se
inclusive & vero) fromElement.

public class Main {

public static void main(String[] args) {
SortedSet<String> set = new TreeSet<>();

set.add("pane");
set.add("frutta");
set.add("pasta");
set.add("vino");

263

set.add("birra");
set.add("acqua");
System.out.println("lista:

+ set);

Iterator<String> iterator = set.iterator();
while (iterator.hasNext())
System.out.println(iterator.next());

lista: [acqua, birra, frutta, pane, pasta, vino]
acqua

birra

frutta

pane

pasta

vino

Oppure inserendo un oggetto con Comparatore:

public class Main {
public static void main(String[] args) {
SortedSet<Persona> set = new TreeSet<>();

Persona pl = new Persona("Bianchi", "Mario","Via Firenze
1");

Persona p2 = new Persona("Rossi","Giorgio", "Via Roma 2");
set.add(pl);

set.add(p2);

set.add(new Persona("Rossi","Ambra", "Via Milano 3"));
Iterator<Persona> iterator = set.iterator();
while(iterator.hasNext())
System.out.println(iterator.next().toString());

public class Persona implements Comparable <Persona>{
private final String cognome;
private final String nome;
private final String indirizzo;
Persona(String cognome,String nome, String indirizzo)({
this.cognhome=cognome;
this.nome=nome;
this.indirizzo=indirizzo;

@Override
public int compareTo(Persona o) {
int r = cognome.compareToIgnoreCase(o.cognome);
if (r == 0) {
r = nome.compareToIgnoreCase(o.nome);

}

return r;
}
@Override
public String toString() {
return "Persona{" + "cognome=" + cognome + ", nome='
'+ indirizzo + '}';

+ nome + ", indirizzo='

Personaicognome=Bianchi, nome=Mario, indirizzo=Via Firenze 1%
Personaicognome=Rossi, nome=Ambra, indirizzo=Via Milano 3}
Personaicognome=Rossi, nome=Giorgio, indirizzo=Via Roma 2}

Le mappe

Una mappa permette di memorizzare degli elementi che possono essere trovati
velocemente mediante delle chiavi. In particolare, una mappa memorizza coppie
chiave-valore (k,v), chiamate entry, in cui:

e k: ¢ la chiave.
e v ¢ il valore a essa corrispondente.

Inoltre ogni chiave € unica e cosi la corrispondenza tra chiavi e valori definisce una
funzione (mapping). In una mappa che memorizza dei record studente (con nomi,
indirizzi e classi frequentate dagli studenti), la chiave pud essere costituita dal

numero ID dello studente.

Key | Value
K1 E1
K2 E2
K3 E3

K4

E4

KS

ES

Ogni elemento (value) viene salvato
nella mappa e viene associato ad una
chiave (key).

Per accedere ad un elemento presente
nalla mappa, posso utilizzare la chiave
associata.

Le principali operazioni sono le seguenti:

Inserzione di una nuova coppia (chiave, valore).

Eliminazione di una coppia (chiave, valore).
Ricerca del valore associato ad una chiave.

o & o o

Aggiornamento del valore associato ad una chiave

Le chiavi (etichette) sono assegnate a valori (dischetti) da un utente. Le entry che ne
risultano (dischetti etichettati) sono inserite in una mappa (contenitore). Le chiavi
possono essere utilizzate in seguito per trovare oppure cancellare i valori.

266

Chiave

Per gestire le mappe, Java mette a disposizione una serie strumenti che
consentono di gestire liste di oggetti dinamiche e non ordinate. Le map sono
composte da:

e interfacce che definiscono i metodi utili per la manipolazione delle collezioni di
oggetti
e classi implementano le interfacce

Le classi e interfacce fanno parte del package java.util. Tra i metodi per la
manipolazione delle mappe di oggetti troviamo quelli che consentono la ricerca
rapida di elementi all'interno della mappa.

L'interfaccia Map<K.V> definisce tutti i metodi che devono essere implementati per
la corretta gestione delle mappe. Le classi principali che implementano l'interfaccia

Mao sono:

HashMap - Hashtable - Properties - TreeMap

267

winterfaces
Map<K, V>
!}‘
I"
K
winterfaces
‘ AbstractMap<k, V> SortedMap<K, V>
interfaces
HashMap<K, V> -
Pe NavigableMap<K, V>
L
I LinkedHashMap<K, V> | TreeMap<K, V> |

Un dizionario € un esempio di mappa:
o la chiave € la parola che viene definita
o Il valore & costituito dalla sua definizione e dall'etimologia

Interface Map<K,V>

K, V]
. Map
int size()

boolean isEmpty()

boolean containsKey(K k)
boolean containsValue(V v)
V get(K k)

V put(K key, V value)

V remove(K k)

void putAll(Map<? extends K, 7 extends V> m)
void clear()

Set<K> keySet()
Collection<V> values()
Set<Entry<K, V>> entrySet()

268

Parametri:

K - il tipo di chiavi gestite da questa mappa

V - il tipo di valori mappati

Di seguito, alcuni metodi dell’interfaccia Map:

V put(K k,V v) Associa, alla mappa, il valore specificato alla chiave specificata. Se la
mappa conteneva gia un'associazione per la chiave, il vecchio valore viene

sostituito. Ritorna il valore precedentemente associato a key, oppure null se non vi
era alcuna associazione riguardante key.

boolean containsKey(K key) Determina se questo oggetto di tipo Map contiene
un'associazione per la chiave specificata.

Viene lanciata un eccezione:

ClassCastException se la chiave specificata non pud essere confrontata con le
chiavi presenti nella mappa.

NullPointerException se la chiave specificata € uguale a null se questa mappa usa
I'ordinamento naturale, oppure il suo comparatore non consente l'uso di chiavi
uguali a null.

boolean containsValue(V value) Determina se questo oggetto di tipo Map contiene
almeno un'associazione che coinvolga il valore specificato.

V get(K key) Restituisce il valore associato alla chiave specificata all'interno di
questo oggetto di tipo Map, altrimenti, restituisce null.

Lancia un eccezione:

ClassCastException se la chiave specificata non pud essere confrontata con le
chiavi presenti nella mappa.

NullPointerException se la chiave specificata € uguale a null e questa mappa usa
I'ordinamento naturale, oppure il suo comparatore non consente l'uso di chiavi
uguali a null.

269

V remove(Object key) Elimina da questo oggetto di tipo Map l'associazione relativa
alla chiave specificata, se tale associazione esiste. Ritorna il valore
precedentemente associato alla chiave specificata, se tale chiave era associata a un
valore; altrimenti, restituisce null.

Lancia un eccezione:

ClassCastException se la chiave specificata non pud essere confrontata con le
chiavi presenti nella mappa.

NullPointerException se la chiave specificata € uguale a null e questa mappa usa
I'ordinamento naturale, oppure il suo comparatore non consente l'uso di chiavi
uguali a null.

Set<Entry<k,V>> entrySet() Restituisce un oggetto di tipo Set contenente le coppie
chiave-valore presenti in questo oggetto di tipo Map.

Set<K> keySet() : Restituisce un insieme di tutte le chiavi di una mappa ad albero

Collection<V> values(): Restituisce una collezione di tutti i valori contenuti nella
mappa

L'interfaccia Map non ha il metodo iterator(), per cui non & possibile scandire un
oggetto di tipo Map se non tramite una "vista" come quella generata dal metodo
entrySet(). A questo scopo, I'interfaccia Map ha un’interfaccia interna pubblica. Entry,
che dispone dei metodi getKey() e getValue().

Sono definiti anche i metodi keySet() e values(), che consentono, rispettivamente, di
effettuare una scansione di un oggetto di tipo Map visto come insieme di chiavi o
come raccolto di valori. Il termine “raccolta di valori” & piu adeguato di “insieme di
valori”, dal momento che ci possono essere valori duplicati.

La classe HashMap

La classe HashMap & un'implementazione dell'interfaccia Map. Sviluppata
avvalendosi della struttura di dati di tipo mappa a sua volta implementata come
tabella hash. Non garantisce alcun ordinamento e consente valori e chiavi nulle.

Un'istanza di HashMap ha due parametri che ne influenzano le prestazioni:
1. Capacita iniziale: il numero di voci nella tabella hash al momento della

creazione.
270

2. load factor: € una misura di quante voci € possibile inserire nella la tabella
hash prima che |la sua capacita venga aumentata automaticamente.

Quando il numero di voci nella tabella hash supera il prodotto del fattore di carico per
la capacita corrente, la tabella hash viene rehashed (ovvero, le strutture di dati
interne vengono ricostruite) in modo che la tabella hash abbia circa il doppio del
numero di bucket.

Come regola generale, il load factor predefinito (.75) offre un buon compromesso tra
costi di spazio e tempo.

Il numero previsto di voci nella mappa e il suo fattore di carico dovrebbero essere
presi in considerazione quando si imposta la sua capacita iniziale, in modo da ridurre
al minimo il numero di operazioni di rehash.

La classe HashMap<K, V> implementa tutti i metodi dell'interfaccia Map<K, V>. Gli
unici metodi in piu sono i costruttori.

public HashMap() Crea una nuova mappa vuota con capacita iniziale 16 e fattore di
carico 0.75.

public HashMap(int capacitalniziale) Crea una nuova mappa vuota con capacita
iniziale specificata e fattore di carico 0.75. Genera una lllegalArgumentException se
capacitalniziale € negativa.

public HashMap(int capacitalniziale, float fattoreDiCarico) Crea una nuova
mappa vuota con capacita iniziale e fattore di carico specificati. Genera una
lllegalArgumentException se capacitalniziale € negativa o fattoreDiCarico € non
positivo.

public HashMap(Map<? extends K, ? extends V> m) Crea una nuova mappa
contenente le stesse associazioni della mappa m. La capacita iniziale & impostata
alle dimensioni di m e il fattore di carico a 0.75. Genera una NullPointerException se
m & null.

Le principali operazioni sulle mappe sono le seguenti:

Inserzione di una nuova coppia (chiave, valore).
Aggiornamento del valore associato ad una chiave.
Eliminazione di una coppia (chiave, valore).
Ricerca del valore associato ad una chiave.

271

Nella tabella € mostrato I'effetto di una serie di operazioni su una mappa inizialmente
vuota, che deve contenere entry con chiavi intere e valori consistenti in un singolo
carattere.

isEmpty() true Vuota

put(5.A) null 1(5,A))

put(7,B) nul [(5,A), (7,B))
put(2,C) null {(5.A), (7.B), (2,C))
put(8,D) null [(5,A), (7.B), (2,C), (8,D)}
put(2.C) C [(5.A), (7.B), (2.C). (8.D)}
get(7) B [(5,A), (7.B), (2.C), (8,D)}
get(4) null {(5.A), (7,B). (2.C). (8.D)}
get(2) C «5,A), (7,0). (2.C), (8.D))
size() 4 {(5.A). (7.B), (2.C). (8.D)]

remove(5) A {(7,B), (2,C), (8.D))

remove(2) E {(7,B). (8.D)}
get(2) nu [(7.B), (8.D))

IsEmpty() false [(7.B), (8.D)}

Esempio: gestire una classifica con una mappa. Immaginiamo di voler gestire una
classifica dei Piloti di Formula 1 attraverso una mappa in cui ciascuna entry sia
rappresentata da:

1. Una chiave che identifica il posizionamento del Pilota.
2. Un valore (il nome del Pilota).

import java.util.HashMap;
import java.util.Map;
public class Main {

public static void main(String[] args) {
Map<Integer, String> classifica = new HashMap<>();

classifica.put(l, "Senna");
classifica.put(2, "Prost");
classifica.put(3, "Mansell");
classifica.put(4, "Lauda");
classifica.put(5,"Patrese");

272

System.out.println("Classifica");
for(Integer key:classifica.keySet())
System.out.println(key+" "+classifica.get(key));

Classifica
Senna
Prost
Mansell

Lauda
Patrese

public static void main(String[] args) {
Map<Integer, String> classifica = new HashMap<>();
classifica.put(1l, "Senna");
classifica.put(2, "Prost");
classifica.put(3, "Mansell");
classifica.put(4, "Lauda");
classifica.put(5, "Patrese");
System.out.println("Size of Map + classifica.size());
System.out.println("La Map contiene 1l'elemento con key=1 " +
classifica.containsKey(1));
System.out.println("La Map contiene 1l'elemento con valore=Senna "
+ classifica.containsValue("Senna"));

System.out.println("La Map & Vuota? " + classifica.isEmpty());
System.out.println("l'elemento con chiave 2 rimosso dalla Mappa &
+ classifica.remove(2));
System.out.println("Size of Map
classifica.clear();
System.out.println("Size of Map

+ classifica.size());

+ classifica.size());

Size of Map 5

La Map contiene 1'elemento con key=1 true

La Map contiene 1l'elemento con valore=Senna true
La Map e Vuota? false

1'elemento con chiave 2 rimosso dalla Mappa € Prost
Size of Map 4

Size of Map 0O

Per sapere se allinterno di una "mappa" € contenuta una data chiave o un dato
valore, si usano rispettivamente i due metodi "containsKey()" e "containsValue()", il
primo dei quali riceve come parametro la chiave. Mentre il secondo il valore, e
ritorna "true" se presente, altrimenti "false".

Iterare le HashMap

Esistono diversi modi per iterare una Map in Java. Vediamo questi metodi
considerando i vantaggi e i svantaggi. Considerando che tutte le mappe in Java
implementano l'interfaccia Map, le seguenti tecniche funzionano per qualsiasi
implementazione mappa (HashMap, TreeMap, LinkedHashMap, Hashtable, etc.)

Metodo 1 : Iterazione delle voci utilizzando un ciclo For-Each.

Questo é il metodo piu comune ed e preferibile nella maggior parte dei casi.
Dovrebbe essere usato se si ha bisogno della coppia chiave-valore.

Map<K, v> map = new HashMap<>0:
for (Map.Entry<K,V> entry :map. entrySet()) {

System.out.println("Key ="+ entry. getKey()+", Value = "+
entry.getvalue));

274

import java.utll.Hashvap;
import java.util.Map;
public class Mappe {
public static void main(String args[]) {
/* This is how to declare HashMap *.
Map<Integer, String> listaDellaSpesa = new HashMap<();

*

Adding elements to HashMap *,

listaDellaSpesa.put(l, "mele");

listaDellaSpesa.put(2, "pere");

listaDellaSpesa.put(7, "mandarini");

listaDellaSpesa.put(3, "limoni");

for (Map.Entry<Integer, String> entry : listaDellaSpesa.entrySet()) {
System.out.println("Key = " + entry.getKey() + ", Value = " + entry.getValue());

}

Out;

Key = 1, Value = mele

Key = 2, Value = pere

Key = 3, Value = limoni
Key =7, Value = mandarini

Metodo 2: Iterazione su chiavi o valori utilizzando un ciclo For-Each.

Se si ha bisogno solo di chiavi o solo dei valori si puoi eseguire ('iterazioni su keySet
o value invece di entrySet.

Map<K,V> map =new HashMap<>();
for(K key : map.keySet()){
System.out.println("Key = "+ key);

¥

for(V value : map.values()) {
System.out.println("Value = "+ value);

¥

Questo metodo offre un leggero vantaggio in termini di prestazioni rispetto entrySet
(circa il 10% piu veloce) ed e piu pulito.

275

package mappe;
| import java.util.HashMap;
+ import java.util.Map;
public class Mappe {
[public static void main(String args[]) {

Map<Integer, String> listaDellaSpesa = new HashMap<=>();

listaDellaSpesa.put(l, "mele");

ListaDellaSpesa.put(2, "pere");

listaDellaSpesa.put(7, " larini");

listaDellaSpesa.put(3, "limoni®);

for (Integer key : listaDellaSpesa.keySet()) {
System.out.print("Chiave + key+"; ");

¥

Systemroutoprintint);

for (String valore : listaDellaSpesa.values()) {
System.out.print("valore = + valore+);

¥

} Output - mappe (run) l
} [[Chiave = 1; Chiave = 2; Chiave = 3; Chiave = 7;
= valore = mele; valore = pere; valore = limoni; valore = mandarini;

Metodo 3: Tramite iterator

Senza Generics

Map map =newHashMap() ;
Iterator itera = mappa.entrySet().iterator():
while(itera.hasNext()){
Map. Entry coppia = (Map.Entry) itera.next();

System.out.println("Chiave: "coppia. getKey)+", valore:
"+coppia.getValue());

¥

276

package mappe;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class Mappe {
public static void main(String args([]) {

MapllistaDelLaSpesa = new HashMap<>();

listaDellaSpesa.put(1,)3
listaDellaSpesa.put(2, Y3
listaDellaSpesa.put(7, "33
listaDellaSpesa.put(3,)i

Set set = listaDellaSpesa.entrySet();
Iterator iterator = set.iterator();
while (iterator.hasNext())
{
Map.Entry chiaveValore = (Map.Entry) iterator.next();
Integer key= (Integer)chiaveValore.getKey();
String valore=(S5tring)chiaveValore.getValue();
System.out.printin(+key+ + valore);
}

Uso di Generics:

Map<K, V> map =newHashMap<>():

Iterator<Map. Entry<K, V>> entries = map.entrySet
().iterator();

while(entries.hasNext()){

Map. Entry<K, V> entry =(Map.Entry<K,V>)entries.next();
System.out.println("Key "+ entry.getkey()+", Value"+
entry. getValue());

}

package mappe;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
sublic class Mappe {
public static void main{String args(]) {

Map<Integer, String> listaDellaSpesa = new HashMap<>(};

listaDellaSpesa.putil,)i

listaDellaSpesa.puti2, 'H

listaDellaSpesa.put(7,)i

listaDellaSpesa.put(3,)3

Set set = listaDellaSpesa.entrySet();

Iterator <Map<Integer,String>> iterator = set.iterator();
while (iterator.hasNext())
{

Map.Entry<Integer,String> chiaveValore = (Map.Entry<Integer,String>) iterator.next();
System.out.printin(+chiaveValore.getKey(]+ + chiaveValore.getValue());

Creato l'oggetto map si costruisce literatore della collezione mappa.entrySet()
richiamando il metodo "iterator().
277

Con il ciclo while si itera finché la collezione avra elementi (hasNext() ritorna "true'
se ci sono ancora elementi). Si crea un nuovo oggetto di tipo Map.Entry e tramite
casting esplicito gli si assegna cio che ritorna il metodo next() dell'iteratore.

Si stampa il contenuto della collezione attraverso i metodi "getKey()" e "getValue()"
che ritornano rispettivamente chiave e valore.

public class Main {
public static void main(String[] args) {
Map<Integer, Character> alfa = new HashMap<>();

System.out.println("la mappa alfa di dimensione " +
alfa.size());

alfa.put(1, 'a');
alfa.put(2, 'b');
alfa.put(7, 'g');
alfa.put(3, 'd');
alfa.put(4, 'c');
alfa.put(5, 'e');
alfa.put(21, '1');
alfa.put(8, 'h');
alfa.put(9, 'i');

Set set = alfa.entrySet();
Iterator iterator = set.iterator();
while (iterator.hasNext()) {
Map.Entry chiave valore = (Map.Entry) iterator.next();

System.out.println("La coppia chiave valore é: +
chiave valore);

}

char var = alfa.get(2);
System.out.println("I1 valore di chiave 2 :
System.out.println(" ");

+ var);

alfa.remove(21);

alfa.put(3,
alfa.put(4,

System.out.println("la Mappa dopo 1'aggiornamento :");
Set set2 = alfa.entrySet();
Iterator iterator2 = set2.iterator();
while (iterator2.hasNext()) {
Map.Entry entry2 = (Map.Entry) iterator2.next();
System.out.print("Key is:

+ entry2.getKey() + " Value is:

System.out.println(entry2.getValue());

Ordinamento HashMap

HashMap non conserva alcun ordine per impostazione predefinita. Se c'é una
necessita, dobbiamo ordinarla in modo esplicito in base al requisito. Vediamo come
ordinare HashMap per :

e chiavi usando TreeMap
e -valori usando Comparator .

HashMapOrdinamento per chiavi

Nel caso di una TreeMap le chiavi devono essere oggetti confrontabili. Questo
requisito si ottiene facendo in modo che la classe che rappresenta le chiavi
implementi l'interfaccia Comparable, oppure utilizzando un costruttore di TreeMap
che accetti come input un oggetto di una classe che implementi l'interfaccia
Comparator.

279

https://replit.com/@RolandoSucco/Hashmap-iteratore#Main.java

Map<K, V>

+qget(key: Objec): V
+put(key: Object, value: V): V
+size(): int

+isEmpty(): boolean

HashMap<K, V> 50rtedn;3pdc V>

+firstKey(): K
+lastKey(): K

i

TreeMap<K, V>

Interface SortedMap<K,V)

Map K\
int size()

boolean isEmpty()

boolean containsKey(K k)
boolean containsValue(V v)
V get(K k)

V put(K key, V value)

V remove(K k)

void putAll{Map<? extends K, ? extends V> m)
void clear()

Set<K> keySet()
Collection<V=> values()
Set<Entry<K, V>> entrySet()

SortedMap EaTl.

Comparator<? super K> comparator()

K firstkey()

SortedMap<K V> headMap(K toKey)

K lastKey()

SortedMap<K\V=> subMap(K fromKey, K toKey)
SortedMap<KV=> tailMap(K fromKey)

Comparator<? super K> comparator(): Restituisce il comparatore utilizzato per
ordinare le chiavi in questa mappa, o null se questa mappa utilizza I'ordinamento
naturale delle sue chiavi.

280

SortedMap<K,V> headMap(K toKey): Restituisce una vista della porzione di
questa mappa le cui chiavi sono rigorosamente minori di toKey.

SortedMap<K,V> subMap(K fromKey, K toKey): Restituisce una vista della
porzione di questa mappa le cui chiavi vanno da fromKey, inclusivo, a toKey,

esclusivo.

SortedMap<K,v> tailMap(K fromKey): Restituisce una vista della porzione di
questa mappa le cui chiavi sono maggiori o uguali a fromKey.

K firstKey(): Restituisce la prima chiave (piu bassa) attualmente in questa mappa.

K lastKey(): Restituisce l'ultima chiave (piu alta) attualmente in questa mappa.

La Classe TreeMap<K,V>

Questa € la classe concreta che permette di implementare una mappa ordinata
utilizzando come chiavi classi che producono oggetti confrontabili.

public class TreeMap extends AbstractMap implements NavigableMap, Cloneable,
Serializable

Costruttori

TreeMap(): Crea una mappa vuota che verra ordinata utilizzando I'ordine naturale
delle sue chiavi.

TreeMap(Comparator comp): Crea un oggetto TreeMap vuoto in cui gli elementi
sono ordinati secondo la specifica data dal comparatore.

TreeMap(Map m): Crea una TreeMap con le voci della mappa che verranno ordinate
usando l'ordine naturale delle chiavi.

TreeMap(SortedMap sm): Crea una TreeMap con le voci della mappa ordinata data
che verranno archiviate nello stesso ordine della mappa ordinata data.

281

Metodi

La TreeMapclasse fornisce vari metodi che ci consentono di eseguire operazioni
sulla mappa.

1 Inserimento

e V put(K k,V v) - inserisce la mappatura chiave/valore specificata (voce)
nella mappa

e void putAll(Map<K,V> m) - inserisce tutte le voci dalla mappa
specificata a questa mappa

e V putlfAbsent(K, k, V v) - inserisce la mappatura chiave/valore
specificata nella mappa se la chiave specificata non & presente nella
mappa

import java.util.TreeMap;

class Main {
public static void main(String[] args) {

TreeMap<String, Integer> numeri = new TreeMap<>();
numeri.put("Quatto", 4);
numeri.put("Due", 2);

numeri.putIfAbsent("Sei", 6);
System.out.println("La mappa numeri: " + numeri);

TreeMap<String, Integer> numeril = new TreeMap<>();
numeri.put("Uno", 1);

numeril.putAll(numeri);
System.out.println("la Mappa numeril: " + numeril);

output:

La mappa numeri : {Due=2, Quatto=4, Sei=6}
la Mappa numeril: {Due=2, Quatto=4, Sei=6, Uno=1}

282

2 Accesso agli elementi

Set<Entry<k,V>> entrySet(): Restituisce un oggetto di tipo Set contenente le
coppie chiave-valore presenti in questo oggetto di tipo Map.

Set<K> keySet() : Restituisce un insieme di tutte le chiavi di una mappa ad albero

Collection<V> values(): Restituisce una collection di tutti i valori

import java.util.TreeMap;

class Main {
public static void main(String[] args) {

TreeMap<String, Integer> numeri = new TreeMap<>();

numeri.put("Uno", 1);
numeri.put("Quatto", 4);
numeri.put("Due", 2);

numeri.putIfAbsent("Sei", 6);
System.out.println("Key/Value mappings: " +
numeri.entrySet());

System.out.println("Keys: + numeri.keySet());

System.out.println("Values: + numeri.values());

Output:

Key/Value mappings: [Due=2, Quatto=4, Sei=6, Uno=1]
Keys: [Due, Quatto, Sei, Uno]
Values: [2, 4, 6, 1]

3 Rimuovere gli elementi

283

remove(key) - restituisce e rimuove la voce associata alla chiave specificata da una
TreeMap

remove(key, value) - rimuove la voce dalla mappa solo se la chiave specificata &
associata al valore specificato e restituisce un valore booleano

import java.util.TreeMap;

class Main {
public static void main(String[] args) {

TreeMap<String, Integer> numeri = new TreeMap<>();

numeri.put("Uno", 1);
numeri.put("Quatto", 4);
numeri.put("Due", 2);

numeri.putIfAbsent("Sei", 6);
System.out.println("La mappa: " + numeri);

int value = numeri.remove("Due");
System.out.println("Rimosso value:

+ value);

boolean result = numeri.remove("Quattro", 3);
System.out.println("é stato rimosso {Quattro=3} ? " +
result);

+ numeri);

System.out.println("La nuova mappa:

Output:

La mappa: {Due=2, Quatto=4, Sei=6, Uno=1}
Rimosso value: 2

e stato rimosso {Quattro=3} ? false

La nuova mappa: {Quatto=4, Sei=6, Uno=1l}

284

4 Sostituisci gli elementi di TreeMap

replace(key, value) - sostituisce il valore mappato da quello specificato chiave con il
nuovo valore

replace(key, old, new) - sostituisce il vecchio valore con il nuovo valore solo se |l
vecchio valore & gia associato alla chiave specificata

replaceAll(function) - sostituisce ogni valore della mappa con il risultato di quello
specificato funzione

import java.util.TreeMap;

class Main {
public static void main(String[] args) {

TreeMap<String, Integer> numeri = new TreeMap<>();

numeri.put("Uno", 1);
numeri.put("Quatto", 4);
numeri.put("Due", 2);
numeri.put("Tre", 3);

numeri.putIfAbsent("Sei", 6);
System.out.println("La mappa:

+ numeri);

numeri.replace("Tre",11);
numeri.replace("Uno", 1, 15);
System.out.println("Nuova mappa

n

+ numeri);

numeri.replaceAll((key, valore) -> valore%2);
System.out.println("TreeMap dopo replaceAll: " + numeri);

La mappa: {Due=2, Quatto=4, Sei=6, Tre=3, Uno=1}
Nuova mappa {Due=2, Quatto=4, Sei=6, Tre=11, Uno=15}
TreeMap dopo replaceAll: {Due=0, Quatto=0, Sei=0, Tre=1, Uno=1}

Poiché la classe TreeMap implementa NavigableMap, fornisce vari metodi per
navigare sugli elementi della mappa.

286

linput-output da File

| programmi hanno bisogno di utilizzare informazioni lette da fonti esterne, o inviare
informazioni a destinazioni esterne (file, dischi, reti, memorie o altri programmi).

In Java, I'/0 & gestito in termini di flussi di dati. Un flusso di dati (generalmente
indicato con il termine inglese stream) pu0 essere costituito da caratteri, numeri o
generici byte. Se i dati fluiscono nel programma, lo stream & detto stream di input.
Se, al contrario, i dati fluiscono dal programma, lo stream & detto stream di output.

A stream

r “ . I rea ds

Source

A stream

writes
| Program f——»

dest

Gli stream sono realizzati come istanze di alcune classi. Gli oggetti di tipo Scanner,
utilizzati per leggere dati da tastiera, sono degli stream di input. L'oggetto
System.out € un esempio di stream di output.

Per prelevare informazioni da una fonte esterna (un file, una rete etc...), un
programma deve aprire uno stream su essa e leggerne le informazioni in maniera
sequenziale. Allo stesso modo un programma puo inviare ad una destinazione
esterna aprendo uno stream su essa e scrivendo le informazioni sequenzialmente.

287

Lettura Scrittura

Apri lo stream Apri lo stream
while (ci sono ancora while (ci sono ancora
dati) dati)

leggi dato scrivi dato
chiudi lo stream chiudi lo stream

Il package java.io contiene una collezione di classi che supportano tali algoritmi di
I/O. Le classi di tipo stream sono divise in due gerarchie separate (anche se simili) in
base al tipo di informazione che devono trasportare:

1. 1.classi basate sui byte
2. 2.classi basate sui caratteri

| I |
| v

InputStream : JutputStrear Writer

I

[

[

!

Stream di Byte Stream di

Ciarattas] Stream di Byte Stream di

Caratteri

Il flusso di byte viene utilizzato per leggere e scrivere un singolo byte (8 bit) di dati.

Tutte le classi di flusso di byte derivano da classi astratte di base chiamate
InputStreame OutputStream.

Il flusso di caratteri viene utilizzato per leggere e scrivere un singolo carattere di dati.

288

Tutte le classi del flusso di caratteri derivano da classi astratte di base Reader e
Writer.

In questo capitolo verranno visti stream che consentiranno di collegare un

programma a dei file, anziché a tastiera e schermo. Quindi prima di analizzare le
classi di I/O vediamo come si gestisce un File in java.

Introduzione alla gestione dei file

Per lavorare con i file Java mette a disposizione diverse classi che consentono di:
1. creare file e directory

2. cercare file e directory

3. rinominare file e directory

4. cancellar e file e directory

5, scrive e all'interno di un file

6. leggere il testo contenuto in un file

Le classi principali si trovano nel package java.io e sono:

per la gestione :

e java.io.File

per la lettura:

e java.io.FileReader
e java.io.BufferedReader

per la scrittura:

* java.io.FileWriter
® java.io.BufferedWriter) <
e java.io.PrintWriter =

\J WA

289

La Classe File:

Questa classe permette di creare, eliminare, rinominare e cercare un file o una
directory (e sottodirectory).

| costruttori della classe File sono i seguenti:

e File(String pathname)
e File(String dir, String subpath)
e File(File dir, String subpath)

Di seguito qualche esempio:

e File dir = new File("/usr" "local"): //istanzia di una directory e un file su un
sistema Unix

e File file = new File(dir, "Abc.java");//istanzia di una directory e un file su un
sistema Windows

e File dir2 = new File("C:directory"):

* File file2 = new File(dir2. "Abc.iava"):

E possibile utilizzare il separatore per il path dei file per i vari sistemi operativi in
maniera dipendente, ma anche utilizzare come separatore "/" pure su sistemi
Windows. La scelta migliore & utilizzare la costante statica della classe File
(dipendente dal sistema operativo):

File.pathSeparator

che vale:
"\\" per Windows "/" e Unix.

Per esempio:

File file = new File("™." + File.pathSeparator + "abc.iava")

Istanziare un file non significa pero crearlo fisicamente sul file system; per farlo &
necessario utilizzare gli stream.

| metodi principali sono:
290

Metodo

exists() Restituisce Il valore true se Il file esiste, altrimenti false.

isFilel) Restituisce il valore true se il file &€ un file, altrimenti false.
Restituisce il valore true se il file € una directory, altrimenti false.

getNamel) Restituisce una stringa con il nome del file o della directory.
Restituisce una stringa con il nome della directory padre del file.

length() Restituisce la dimensione del file in byte.

lastModified() | Restituisce il timestamp dell’'ultima modifica al file.

canRead() Restituisce il valore true se il file pud essere letto, altrimenti false.
canWrite() Restituisce il valore true se il file pud essere scritto, altrimenti false.

import java.io.*;
import java.util.Scanner;
public class file{

public static void main(String arg[]){
System.out.println("\n\n\n Immetti il nome del file
cercato:");
Scanner tastiera=new Scanner(System.in);
String nome=tastiera.nextLine() ;
File f=new File(nome);
if (!f.exists()) System.out.println("NON ESISTE il file
"+nome) ;
else {
long dim=f.length();
System.out.print("I1 file: "+nome+" e' lungo:"+dim+"
byte.");
if (f.canWrite())
System.out.println(" E' di lettura e scrittura.");
else System.out.println(" E' di sola lettura.");

L'oggetto di tipo File pud essere utilizzato anche per riferirsi alle directory. Per
esempio:

File directory = new File("c: \\windows");

Con le directory, oltre ai metodi elencati precedentemente, si possono utilizzare
anche i seguenti:

Metodo Descrizione

list() Restituisce un array di String con I'elenco dei file e delle sottodirectory contenuti
nella directory.

listFile() | Restituisce un array di File con |'elenco dei file e delle sottodirectory contenuti
nella directory

mkdir() Crea la directory il cul nome & stato indicato nel costruttore della classe File

Ottenere I'elenco di directory

Per visualizzare il contenuto di una directory si pud utilizzare l'oggetto File in due
modi diversi:

1. chiamando il metodo list() senza argomenti per ottenere il contenuto completo
dell'oggetto File.

mport java.io.*;

public class directory{

public static void main(String arg[]){
File f=new File(".");

File a[]=f.listFiles();

for (int i=0; i<a.length;i++){

String s=a[i].toString();
System.out.println(a[i].getName());

2) usare list(FilenameFlter a) che accetta il parametro java.io.FilenameFilter e
consente di filtrare i file e le cartelle per visualizzare un elenco limitato, per esempio
dei soli file con estensione class.

292

i

mport java.util.regex.*;
import java.io.*;
. : TUtil. *;

import java.util.*
public class DirlList {

public static void main(String[] args) {
File path = new File(".");

list = path.list(new DirFilter(args[0]));

Arrays.sort(list, String.CASE_INSENSITIVE_ORDER);
for (String dirItem : list) {
System.out.println(dirItem);

class DirFilter implements FilenameFilter {
private Pattern pattern;
public DirFilter(String regex) {

pattern = Pattern.compile(regex);

public boolean accept(File dir, String name) {

| metodi per modificare i file:

— -~ |-\~

return pattern.matcher(name).find();

293

Metodo Descrizione

deletel) Cancella il file.
setReadOnly() | Imposta I'attributo di sola lettura al file.

renameTo(File) | Rinomina il file con il nome indicato nell’oggetto File passato come
parametro.

Istanziare un file non significa perd crearlo fisicamente sul file system; per farlo &
necessario utilizzare gli stream.

File di testo e file binari

| file trattati da Java possono essere classificati in due categorie:
- file di testo
* binario

Ognuno dei due tipi di file ha i propri stream e metodi per elaborarli. Il tipo di file,
determina quali classi debbano essere utilizzate per l'input e per 'output. Il vantaggio
principale dei file di testo € che €& possibile crearli, visualizzarli e modificarli
utilizzando un editor di testi. Per un file binario, le operazioni di lettura e scrittura
devono generalmente essere eseguite da un programma apposito. In un file di testo
ogni carattere € rappresentato per mezzo di uno o due bvte. a seconda che |l
sistema utilizzi la codifica ASCIl o Unicode. Quando un programma scrive un valore
in un file di testo, il numero di caratteri che vengono scritti € lo stesso che si avrebbe
scrivendo lo stesso valore su schermo per mezzo del metodo System.out. printin.
Per esempio, la scrittura in un file di testo del numero 1345 comporta la scrittura di
quattro caratteri nel file, come mostrato nella Figura.

Testo

1345

Binario

294

| file binari immagazzinano tutti i valori dello stesso tipo primitivo nello stesso
formato. Ogni valore € quindi salvato come sequenza dello stesso numero di byte.
Per esempio, i valori di tipo int occupano ognuno quattro byte. Un programma Java
interpreta questi byte in modo molto simile a quanto fa con i dati nella memoria
principale. E per questo motivo che la gestione dei file binari &€ molto efficiente.

File di testo

Vediamo le operazioni di I/0O sui file di testo.

Le 4 classi base astratte forniscono dei metodi generici per leggere e scrivere "flussi”
di dati dall'input e verso l'output.

Le classi derivate si dividono in due categorie, specializzate in due sensi:

1. classi (dette sorgenti) che, senza aggiungere funzionalita, specializzano le classi
astratte rispetto alla sorgente/destinazione destinazione dei flussi.

o Per l'input. il flusso pud diventare un file o un buffer:

o Per I'output, il flusso pud diventare un file o un buffer;

2. classi (dette di filtraggio) che, non preoccupandosi della sorgente/destinazione dei
flussi, specializzano e aumentano le funzionalita delle classi astratte per fare in
modo di poter leggere/scrivere non piu soltanto stram di byte o di caratteri, ma dati
strutturati, quali:

- i tipi primitivi di Java,;

- interi oggetti;

inoltre, ci sono classi che specializzano le funzionalita permettendo forme complesse
di filtraggio ed elaborazione dei dati.

Per usare I'l/O, si tratta di "comporre" le classi concrete che ci interessano in modo
da avere un oggetto che presenti tutte le funzionalita richieste. Si utilizza il metodo

dell'incapsulamento:

- si crea un oggetto da una classe sorgente, per definire il flusso specifico dei dati;

295

e si crea un oggetto da una classe di filtraggio concreta del secondo tipo, e si
passa al costruttore l'oggetto stream prima creato (come per incapsulario
dentro)

e si possono poi eseguire ulteriori incapsulamenti della classe di filtraggio in
un'altra classe di filtraggio al fine di ottenere, tramite successivi
incapsulamenti, tutte le funzionalita previste.

Scrittura di un File di Testo

extends
BufferedWriter OutputStreamWrite StringWriter
extends

FileWriter

java.io.FileWriter

La classe FileWriter permette di scrivere i caratteri in un file di testo.

Costruttori

public FileWriter(String fileName): Crea un oggetto FileWriter a cui viene
assegnato un nome file se il file esiste viene eliminato.

public FileWriter(String fileName, boolean append): Crea un oggetto FileWriter a
cui viene assegnato un nome file con un valore booleano che indica se € true, i dati

verranno scritti alla fine del file anziché all'inizio.

public FileWriter(File file): Crea un oggetto FileWriter dato un oggetto File se il file
esiste viene eliminato.

296

public FileWriter(File file, boolean append): Crea un oggetto FileWriter dato un
oggetto File. Se il secondo argomento € true, i byte verranno scritti alla fine del file
anziché all'inizio.

| costruttori generano una IOException -se il file indicato esiste ma & una directory

anziché un file normale, non esiste e non pud essere creato o non pud essere aperto
per nessun altro motivo

Metodi

public Writer append(char c): inserisce il carattere specificato nello stream
corrente

public void flush(): forza a scrivere tutti i dati presenti nello stream alla destinazione
corrispondente

public void close() - chiude lo stream

public void write(int a): Scrive un singolo carattere. |l carattere da scrivere &
contenuto nei 16 bit di ordine inferiore del valore intero dato; i 16 bit di ordine
superiore vengono ignorati.

public void write(char c[]) /scrive un arrayd i caratteri

public void write(String str): scrive una stringa

public void write(char c[],int offset, int length) //scrive lenght caratteri di c[]
iniziando da offeset

public void write(string str, int offset, int length)
Lanciano una IndexOutOfBoundsException- Se offset € negativo, o length &

negativo, o offset+length € negativo o maggiore della lunghezza della stringa o array
dato.

297

Tutti i metodi lanciano una IOException - Se si

erifica un errore di I/0

Per aprire un file di testo, tipicamente si crea un oggetto di tipo FileWriter

FileWriter f= new FileWriter ("prova.txt"): crea uno stream f per scrivere sul file
prova.txt.

L'istruzione crea uno stream f per scrivere sul file prova.txt. Rappresentando
graficamente gli stream si ottiene la seguente figura:

FileWriter

—_— e _.'Ij

File

Programma

Se il file prova.txt esiste viene sovrascritto e viene cancellato tutto il suo contenuto.

Se si vuole aprire un file esistente, per accodare dei valori, si deve sostituire la
creazione del FileWriter nel seguente modo:

FileWriter file = new FileWriter("prova.txt"”, true): Il valore del secondo parametro
indica la condizione di accodamento (append), se true il file viene aperto per
aggiungere i dati in coda a quelli preesistenti. Altrimenti se false, il file viene aperto in
scrittura e cid comporta la cancellazione di un eventuale archivio preesistente.

Esempio:

java.io.FileWriter;
java.io.Writer;

298

public class Main {

public static void main(String args[]) {
String data = "Ciao Mondo";

File f = new File("prova.txt");

try {

Writer output = new FileWriter(f);

output.write(data);

output.write("\n");
output.write(49);

output.append('0');

output.close();

catch (Exception e) {
e.getStackTrace();

Output nel file prova.txt

© prova.txt

ciao mondo
10

Lo stream precedente si pud migliorare incapsulano lo stream tramite le classi:

BufferedWriter: Che & simile alla classe FileWriter ma permette di scrivere i
caratteri nel file in blocchi. | caratteri vengono memorizzati temporaneamente in un
buffer temporaneo. Periodicamente i caratteri vengono letti dal buffer e scritti
fisicamente sul file, quindi, le prestazioni migliorano notevolmente.

299

PrintWriter &€ simile alla classe BufferedWriter ma permette di scrivere nel file
stringhe formattate.

In questo caso per aprire un file di testo, si crea un oggetto di tipo FileWriter

FileWriter f= new FileWriter ("agenda.txt"):// crea uno stream f per scrivere sul file
agenda.txt.

A sua volta, FileWriter € incapsulato in un oggetto di tipo PrintWriter. Quindi:

PrintWriter fOUT = new PrintWriter(f)://si scrive su questo

File
Programma

Della classe PrintWriter si possono utilizzare i metodi:
print(). printIn0) e printf() per scrivere caratteri in un file aperto con successo.

Esempio:

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
public class Main {

public static void main(String[] args) {
File ¥ = new File("agenda.txt");
try {
FileWriter out=new FileWriter(f);
PrintWriter output=new PrintWriter(out);
output.println("Rossi Mario ©3456722122");

300

output.println("Bianchi Marita ©3224567");
output.println("Fantozzi Ugo 0654346744");
output.println("Silvani Anna 05466824567");
output.flush();
output.close();

} catch (IOException ex) {
System.out.println("errore nella scrittura del file");

Output:

h @ agenda.ixt

d Rossi Mario 03456722122
Bianchi Marita 03224567

| Fantozzi Ugo 0654346744
Silvani Anna 05466824567

Inoltre questa classe contiene il costruttore:

PrintWriter(File file) che permette di scrivere su un file senza incapsulare un'altro
stream.

Lettura di un file di testo

La classe Reader del pacchetto java.io € una superclasse astratta che rappresenta
un flusso di caratteri.

Poiché Reader & una classe astratta, non €& utile di per sé. Tuttavia, le sue
sottoclassi possono essere utilizzate per leggere i dati.

301

extends

extends

La classe FileReader

L'apertura di un file di testo per le operazioni d'input, viene eseguita con la
dichiarazione dell'oggetto FileReader.

Costruttori
FileReader(File file): Crea un nuovo FileReader , dato il File da cui leggere.

FileReader(FileDescriptor fd): Crea un nuovo FileReader , data la FileDescriptor da
cui leggere.

FileReader(String fileName): Crea un nuovo FileReader , dato il nome del file da cui
leggere.

| costruttori lanciano un eccezione FileNotFoundException - se il file indicato non

esiste, € una directory piuttosto che un file normale, o per qualche altro motivo non
puo essere aperto per la lettura.

Metodi di lettura
boolean ready() - verifica se lo stream & pronto per essere letto
int read(char[] array) - legge i caratteri dal flusso e li memorizza nell'array specificato

int read(char[] array, int start, int length) - legge il numero di caratteri pari a
lunghezza dal flusso e archivia nell'array specificato a partire da inizio

void mark(int a) - segna la posizione nel flusso fino a cui sono stati letti i dati
302

void reset() - riporta il controllo al punto del flusso in cui &€ impostato il contrassegno
long skip(long n) - elimina il numero di caratteri specificato dallo stream
| metodi lanciano una |OException - se si verifica un errore di 1/0

L'istruzione:

Reader file = new FileReader("agenda.txt");

crea un flusso dal file verso il programma.

file

agenda.txt

O
O

Programma
Esempio:

public class Main {
public static void main(String[] args) {
File f = new File("agenda.txt");
try {
char[] a = new char[48];
Reader input = new FileReader(f);
input.read(a);

System.out.print(a);

char car = ;

int 1i;

while ((i = input.read()) != -1) {
System.out.print((char) 1i);
}

303

https://docs.oracle.com/javase/7/docs/api/java/io/IOException.html

} catch (IOException ex) {
System.out.println("errore di I/0");

Output:

Rossi Mario 03456722122
Bianchli Marita 03224567
Fantozzi Ugo 0654346744
Silvanli Anna 05466824567

Per migliorare le prestazioni e agevolare la lettura di Stringhe si decorala lo stream
FileReadere tramite la classe BufferedReader.

FileReader file = new FilelInputStream("agenda.txt");
BufferedReader fileln = new BufferedReader(file);

La prima riga crea uno stream file per leggere dal file agenda.txt. Le operazioni di
lettura non vengono fatte direttamente su questo stream, ma sul secondo stream
creato dalla classe BufferedReader, che contiene i metodi per la lettura dei dati
memorizzati.

Rappresentando graficamente gli stream si ottiene la seguente figura:

| FileRead: Bl BufferedReader W
3 _» _’ zes e
file fileln ;.-’.L_-,J *__.-' T
agenda.txt e e
Programma

304

Per leggere le informazioni contenute in un file di testo si usano due metodi della
classe BufferedReader:

o read(): legge un singolo carattere, ma come valore di ritorno restituisce un intero
(-1 quando viene raggiunta la fine del file). Per ottenere il carattere letto si deve

effettuare il casting: char ¢ = (char) fileIn.readO;

o readLine(): legge una riga di testo e come valore di ritorno restituisce una stringa.
Se ¢ stata raggiunta la fine del file il metodo restituisce un valore null.

La chiusura di uno stream, sia di input che di output, viene fatta richiamando il
metodo close nel seguente modo:

f.close();

public class Main {

public static void main(String[] args) {

File f = new File("agenda.txt");
try {
FileReader in = new FileReader(f);
BufferedReader input=new BufferedReader(in);
String s=null;
while ((s = input.readLine()) != null) {
System.out.println(s);

¥

} catch (IOException ex) {
System.out.println("errore di I/0");

}

Codice di Esempio di un agenda

305

https://replit.com/@RolandoSucco/File-agenda#Main.java

Un altra possibilita per leggere in un file di testo € usare la classe Scanner passando
come argomento il file da leggere.

Scanner leggi=new Scanner(new File("agenda.txt"));
Nuovo I/O — Lettura di testo

Per compiere operazioni sui file la classe principale di riferimento si chiama Files
localizzata nel package java.nio.file. Questa classe offre un ricco set di metodi statici
(oltre 50 escludendo quelli ereditati da Object) per leggere, scrivere e manipolare
file e directory.

Metodo Descrizione

public static byte[] readAllBytes(Path path) Iggge tpﬂi i byte dell file indicato dal parametro path e li
ritorna in un array di tipo byte.

legge tutte le righe di testo dal file indicato dal parametro

path e le ritorna come un oggetto di tipo List. | byte sono

decodificati nei corrispondenti caratteri rispetto al charset

indicato dal parametro cs.

public static List<String> readAllLines(Path path, Charset cs)

scrive | byte indicati dal parametro byte nel file indicato
dal parametro path. E possibile passare come ultimo
: : : > parametro una serie di oggetti che implementano
2:22?15?‘%6 Path write(Path path, byte[] bytes, OpenOption... Finterfaccia OpenOption (come I'enumerazione

StandardOpenOption), che consentono di indicare
parametri per l'apertura o la creazione della risorsa

(CREATE, READ, WRITE,APPEND e cosi via).

public static Path write(Path path, Iterable<? extends Scrive la sequenza di righe indicate dal parametro lines

CharSequence> lines, Charset ¢s, OpenOption... options) nel file indicato dal parametro path, codificando i
caratteri in bvte secondn il charset del narametro cs. E

apre per la lettura il file indicato dal parametro path
decodificandone i byte nei relativi caratteri come indicato
dal parametro cs. Ritorna un oggetto di tipo
BuffereReader che pud essere utilizzato per la lettura
efficiente del file corrispondente.

public static BufferedReader newBufferedReader(Path path,
Charset cs)

apre o crea per la scrittura il file indicato dal parametro
path codificandone i caratteri nei bytecome indicato dal
parametro cs e utilizzando il parametro options per
fornire una serie di parametri per l'apertura o la
creazione della risorsa. Ritorna un oggetto di tipo
BufferedWriter con cui scrivere in modo efficiente nel
relativo file.

public static BufferedWriter newBufferedWriter(Path path,
Charset cs, OpenOption... options)

I metodo readAllLines() che utilizza la codifica dei caratteri predefinita e stato
introdotto in jdk1.8 permette di leggere un file di testo in un'unica istruzione.

public class Main {
public static void main(String[] args) {

File f=new File("agenda.txt");

306

try {
List<String> lista= Files.readAllLines(f.toPath());

for(String s: lista)
System.out.println(s);

} catch (IOException ex) {
System.out.println("Errore i/0");

Codice agenda nio

File binario

Per scrivere su un file binario si fa riferimento alla classe OutputStream del
pacchetto java.io che & una super classe astratta che rappresenta un flusso di output
di byte.

extends

Poiché OutputStreamé una classe astratta, non & utile di per sé. Tuttavia, le sue
sottoclassi possono essere utilizzate per scrivere dati.

La classe:

307

https://replit.com/@RolandoSucco/File-agenda-3#agenda.txt

FileOutputStream

permette di scrivere in un file di byte.
Costruttori

FileOutputStream (File f): Crea uno stream di output per scrivere nel file
rappresentato dall'oggetto File specificato.

FileOutputStream (String nome): Crea uno stream di output per scrivere nel file
col nome specificato.

FileOutputStream (FileDescriptor fd): Crea uno stream di output per scrivere nel file
specificato.

FileOutputStream (File f, boolean append): Crea uno stream di output per scrivere
nel file rappresentato dall'oggetto File specificato.

FileOutputStream (String nome, boolean append): Crea uno stream di output per
scrivere nel file rcol nome specificato.

append- se true, i byte verranno scritti alla fine del file anziché all'inizio se ¢é false il
file esistente viene eliminato

| costruttori lanciano una FileNotFoundException - se il file esiste ma € una directory
anziché un file normale, non esiste ma non pud essere creato o non pud essere
aperto per nessun altro motivo.

Metodi

void close() Chiude lo Stream. IOException - se si verifica un errore di I/0O

void write(byte[] b) Scrive I'array di byte specificata. |IOException - se si verifica un
errore di /0. IOException - se si verifica un errore di I/O

void write(byte[] b, int off, int len) Scrive i len byte dall'array di byte specificato a
partire dall'offset off.

void write(int b) Scrive il byte specificato. IOException - se si verifica un errore di
I/O

308

L'apertura di un file strutturato per le operazioni di output, viene eseguita con le
dichiarazioni dei seguenti oggetti:

FileOutputStream file = new FileOutputStream ("agenda.dat");

comandi, se il file esiste viene sovrascritto e viene cancellato tutto il suo contenuto.
Se si vuole aprire un file esistente, per accodare dei valori, si deve sostituire la
creazione del FileOutputStream nel seguente modo:

FileOutputStream f = new FileOutputStream("agenda.dat", true);

Il valore del secondo parametro indica la condizione di accodamento (append):

e true il file viene aperto per aggiungere i dati in coda a quelli preesistenti.
e false (o non presente): il file viene aperto in scrittura e cid comporta la
cancellazione di un eventuale archivio preesistente.

FileOutputStream

—

file

Programma agenda.dat

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

public class Main {

public static void main(String[] args)

309

String data = "ciao mondo";

try {
OutputStream out = new FileOutputStream("prova.dat");

byte[] dataBytes = data.getBytes();

out.write(dataBytes);

out.write(49);

out.close();
} catch (IOException ex) {
System.out.println("Errore i/0");

Per migliorare le prestazioni e permettere di scrivere interi oggetti e dati primitivi si
incapsula l'oggetto FileOutputStream usando la classe:

ObjectOutputStream

Costruttore

public ObjectOutputStream (OutputStream out) Crea un ObjectOutputStream
che scrive nell'OutputStream specificato. Lancia:

e |OException - se si verifica un errore di I/O durante la scrittura

e SecurityException - se la sottoclasse non attendibile sovrascrive illegalmente i
metodi sensibili alla sicurezza

e NullPointerException- se lo out & null

Si possono utilizzare diversi metodi per la scrittura. Ogni metodo memorizza su file
un particolare tipo di dato e assume la forma

310

Al posto di Dato si sostituisce il tipo di dato che si vuole memorizzare. Per esempio:

fileOut.writelnt(25400);
fileOut.writeDouble(12.36);

Prima di chiudere il file € importante eseguire il metodo flush, che serve per
scrivere su disco tutti i dati che sono attualmente contenuti nel buffer dello stream.
metodo di scrittura piu importante é

writeObject

Con questo metodo € possibile salvare su di un file anche gli oggetti memorizzando
tutti i suoi attributi non statici. Una classe, le cui istanze si vogliono rendere
persistenti, deve implementare l'interfaccia Serializable.

FileOutputStream file = new FileOutputStream ("elenco.dat");

ObjectOutputStream fileOut = new ObjectOutputStream(file);

FileOutputStream e
ﬁ |I

file

Programma

agenda.dat

.FileOQutputStream;
.IOException;
.ObjectOutputStream;
.OutputStream;

Main {

311

public static void main(String[] args)
String data = "ciao mondo";

try {
OutputStream f = new

FileOutputStream("prova.dat");
ObjectOutputStream out = new
ObjectOutputStream(f);

out.writeUTF(data);

out.writeInt(49);

out.writeDouble(49.54);
out.flush();

out.close();
} catch (IOException ex) {
System.out.println("Errore i/0");

Input File Binario

Per aprire uno stream di byte in input si fa uso della classe

InputStream

del pacchetto java.io.

Poiché InputStream €& una classe astratta, non € utile di per sé. Tuttavia, le sue
sottoclassi possono essere utilizzate per leggere i dati.

InputStream

extends

FilelnputStream ByteArraylnputStream i ObjectinputStream

Per leggere da un file si utilizza la classe

FilelnputStream

Costruttori

FilelnputStream(File file) Crea uno Stream sul file effettivo, indicato dall'oggetto
File passato come parametro.

FilelnputStream(FileDescriptor fdObj) Crea uno Stream utilizzando il descrittore
di file fdOb.

FilelnputStream(String nome) Crea uno Stream sul file dal nome.
Viene lanciata una FileNotFoundException - se il file non esiste, & una directory

piuttosto che un file normale, o per qualche altro motivo non pud essere aperto in
lettura.

Metodi

int available() Restituisce una stima del numero di byte rimanenti che possono
essere letti (o ignorati) nello stream di input senza essere bloccati dalla chiamata
successiva di un metodo.

void close() Chiude lo stream.

int read() Legge un byte di dati dallo stream. Ritorna: il byte di dati o -1se viene

raggiunta la fine del file.

313

int read(byte[] b) Legge un'array di byte dallo stream. Ritorna: il numero totale di
byte letti nel buffer, 0 -1se non ci sono piu dati perché é stata raggiunta la fine del file

int read(byte[] b, int offset, int len) Legge fino a len byte di dati partendo
dall'offset. Ritorna: il numero totale di byte letti nel buffer, o -1se non ci sono piu dati

perché € stata raggiunta la fine del file

long skip(long n) Salta ed elimina n byte di dati dallo stream. Ritorna:il numero
effettivo di byte ignorati.

Viene Lanciata una IOException - se si verifica un errore di 1/O.

L'apertura di un file strutturato per le operazioni di input, viene eseguita con le
dichiarazioni dell'oggetto:

FilelnputStream in = new FilelnputStream ("elenco.dat");

FilelnputStream

file

agenda.dat
Programma

public class Main {
public static void main(String[] args) {

try {
InputStream input = new FileInputStream("prova.dat");

int i;
while((i=input.read())!=-1)
System.out.print((char)i);

314

input.close();
(IOException ex) A
System.out.println("Errore i/0");

Questa classe pud essere usata insieme alla classe FileOutputStream per fare delle
copie di un file.

Per migliorare le prestazioni e la semplicita del codice si incapsula l'oggetto
FileInputStream tramite la classe

FileInputStream file = new FilelnputStream ("elenco.dat");

ObjectlnputStream fileln = new ObjectinputStream(file);

_ FilelnputStream ¥
!, | ﬁ

r—— file fileln —
agenda.dat Programma

Per leggere le informazioni contenute in un file strutturato, si usano i metodi della
classe ObjectinputStream. Questi metodi assumono la forma

readDato

dove al posto di Dato si sostituisce il tipo di dato che si vuole leggere. Per evitare di
ottenere inconsistenza, i dati devono essere letti nello stesso ordine in cui sono stati
salvati.

315

Tra i metodi di lettura c'€ il metodo readObject che consente di recuperare un
oggetto precedentemente salvato.

Questo metodo restituisce un oggetto di classe Object che attraverso il casting puo
essere riportato alla sua classe originaria. La lettura di un oggetto comporta la
creazione di una nuova istanza della classe, in cui a ogni attributo viene assegnato |l
valore letto dal file.

Se non si conosce quanti sono i dati contenuti nel file, si pud usare un ciclo infinito
per continuare a leggere finché viene generata I'eccezione EOFException. Questa
eccezione segnala che si & raggiunta la fine del file € non ci sono piu dati da leggere;
si pud quindi interrompere.

public class Main {

public static void main(String[] args) {
try {
InputStream in = new FileInputStream("prova.dat");
ObjectInputStream input= new ObjectInputStream(in);
String s=input.readUTF();
System.out.println(s);
int i=input.readInt();
System.out.println(i);

double d=input.readDouble();
System.out.println(d);

input.close();
} catch (IOException ex) {
System.out.println("Errore

Output:

ciao mondo

316

49
49.54

Codice agenda

Streami e file ad accesso diretto

| file ad accesso diretto sono modellati da oggetti della classe

RandomAccessFile

In tali file & possibile scrivere o leggere dati in corrispondenza di specifiche posizioni
del supporto. La classe implementa i metodi delle interfacce

Datalnput e DataOutput

Il file viene visto come sequenza di byte, con un indice (file pointer) che identifica la
posizione per la successiva operazione di 1/0O. Dopo una operazione di I/O, la
posizione del file pointer viene aggiornata.

Costruttori
o RandomAccessFile (String name. String mode)
o RandomAccesskFile (File file, String mode)

Il parametro mode stabilisce se il file va aperto in sola lettura, nel caso il suo valore
sia "r", oppure sia in lettura/scrittura qualora il valore sia "rw"

317

https://replit.com/@RolandoSucco/File-strutturati#LeggiAgenda.java

Metodi

long getFilePointer(): restituisce il valore corrente del puntatore al file, valutato
conteggiando il numero di byte che lo separano dall'inizio dello stream

-void seek (long pos): assegna al puntatore il valore pos, indicante la posizione del
byte in corrispondenza al quale effettuare la successiva operazione di lettura o di
scrittura.

void closel)

int skipBvtes(int n) :Salta n bvtes di input

Metodi in lettura

int read()//Legge un byte dal file

int read(byte b[]) /Legge b.lenght byte da questo file e li mette in un array di byte

int read(byte b[], int off, int len) //Legge len byte dal file e li mette in un array iniziando
da off

boolean readBoolean()

byte readByte()

char readChar() /Legge un unicode carattere

double readDouble()

float readFloat()

int readInt()

String readLine() //Legge la prossima linea di testo dal file

short readShort() // Legge un 16-bit con segno numero
Metodi di scrittura

void writeBoolean (boolean v)

318

void writeByte(int v)

void writeBytes (String s) //scrive la stringa in un file come sequenza di bytes
void writeChar (int v)

void writeDouble(double v)

void writeFloat(float v)

void writelnt(int v)

void writeLong (long v)

void writeshort(int v)

import java.io.*;

import java.util.Scanner;
public class Main{

public static void main(String arg[])throws IOException{
FileOutputStream outF = new FileOutputStream ("FileDiProva");

for (char ch = '"a'; ch <= 'z'; ch++)
outF.write (ch);
outF.close();

RandomAccessFile inpF = new RandomAccessFile ("FileDiProva", "r");
long j=inpF.length()-1;
System.out.println("inserisci da quale byte si vuole leggere da 2
a "+3);
Scanner tastiera= new Scanner(System.in);
int i=tastiera.nextInt();
for (int k = i; k >=0; k--) {
inpF.seek (k);
char ch = (char) inpF.readByte();
System.out.print (ch);

319

inpF.close();

Prova il Codice

320

https://replit.com/@RolandoSucco/File-accesso-random#Main.java

La gestione delle date

Quando si scrive un programma capita di utilizzare le date e gli orari. Alcuni esempi
di utilizzo delle date sono:

data di nascita

data di una fattura

data di un ordine di acquisto o di vendita
data di un evento

Quando si lavora con le date bisogna considerare diversi fattori, tra cui:

1. Il formato della data (dd/mm/yyyy o yyyy/mm/dd...
2. Il fuso orario

Le classi java per la gestione delle date sono:

java.sql.Timestamp
java.util.Date
java.util.Calendar
java.util.GregorianCalendar
java.text.SimpleDateFormat
java.time

ok whN =

321

La prima classe usata per trattare le date era la classe:

Classe Date

java.util.Date

Questa classe rappresenta l'intervallo di tempo espresso in millisecondi che va dal 1
gennaio 1970 al momento di creazione dell'oggetto Date. L'istante temporale viene
calcolato in base al default time della JVM.

Con la versione di java 1.2 & stato introdotta la classe:

java.util.Calendar

ma la situazione non & migliorata di molto in quanto anche questa classe ha gli
stessi problemi di Date e cioé:

o E' mutabile, mentre una data dovrebbe essere auspicabilmente immutabile

o Entrambe rappresentano intervalli di tempo

o | mesi partono da 0. Generando confusione

Le classi di utilita per formattare le date si possono usare solo con Date e non con
Calendar. Non sono thread-safe e quindi inadatte, senza gli adeguati accorgimenti,

in applicazioni concorrenti.

In Java 8 e disponibile una nuova API iava.time che risolve molte limitazioni presenti
nelle precedenti versioni di Java.

Tuttavia queste classi sono comunque importanti visto che tutto il codice Java scritto
sino all'avvento di Java 8 ne ha fatto uso.

322

| costruttori di un oggetto Date:

Date(): Crea un oggetto di tipo date e lo inizializza in modo che rappresenti il
momento in cui & stato assegnato misurato al millisecondo piu vicino.

Date(long date): Crea un oggetto di tipo date e lo inizializza in modo che
rappresenti il numero specificato di millisecondi dal tempo base standard noto come
"l'epoca”, ovvero 1 gennaio 1970, 00:00:00 GMT.

import java.util.Date;
public class Main {
public static void main(String[] args) {
Date dataA = new Date();
System.out.printin(dataA);

}
}

Questo codice crea un oggetto che contiene la data attuale e la stampa.

Metodi
boolean after(Date when) Verificase questa data & successiva alla data specificata.
booclean before(Date when) Verificase questadataé precedente alla data specificata.
Object clone() Restituisce una copiadiquesto oggetto.
int compareTo(Date anotherDate) Confrontadue date perl'ordine.
boolean equals(0Object obj) Confrontaduedate per|'uguaglianza.
static Date from(Instant instant) Ottieneun'istanzadiDate daunoggetto Instant.

La maggior parte dei metodi e dei costruttori della classe java.util.Date sono
deprecati, questo significa che si deve evitare di utilizzarli nello sviluppo di nuovi
programmi.

Per questo motivo per operare correttamente con un oggetto di classe Date, bisogna
farlo utilizzando altre classi, quali:

323

1. DateFormat
2. SimpleDateFormat.
3. Calendar

Se si preferisce memorizzare le date come oggetti di tipo Date, si riesce a evitare
I'utilizzo di metodi deprecati facendo la conversione tra gli oggetti Date e Calendar,
quando di devono manipolare le date.

La classe DateFormat

Questa classe € utile per ottenere la conversione di un oggetto di tipo Date in una
stringa di testo utilizzando diversi stili di visualizzazione, attraverso I'uso di quattro
constanti definite nella stessa classe. Le costanti degli stili di visualizzazione di una
data sono:

STILE ESEMPIO

DateFormat.SHORT 04/12/21
DateFormat.MEDIUM 4-dic-2021
DateFormat.LONG 4 dicembre 2021
DateFormat.FULL sabato 4 dicembre 2021

Alcuni metodi utili:

DateFormat getDatelnstance(int stile, Locale unLocale) — metodo statico che
istanzia un oggetto di classe DateFormat secondo un fissato stile di visualizzazione
della data; richiede due parametri: il primo imposta lo stile (vedi tabella precedente),
il secondo imposta la localizzazione (vedi esempi seguenti).

String format(Date data) — converte un oggetto di classe Date, in una data sotto
forma di una stringa (String).

Date parse(String data) — converte una data fornita come String, in un oggetto di
classe Date. Se la stringa non pud essere convertita lancia un’eccezione di classe
ParseException. Affinché perd nella conversione questo metodo possa segnalare in
maniera rigorosa tutti gli errori, & necessario impostare opportunamente il metodo
setLenient().

void setLenient(boolean element) — imposta il tipo di controlli da effettuare durante
la conversione di una stringa in un oggetto di classe Date e quindi se segnalare o
meno alcuni errori di conversione. Richiede un parametro booleano da impostare su

324

false se si vuole che il metodo parse() non sia clemente, ma al contrario rigoroso, nel
calcolo e quindi conversione della data (es. non accettera una data del tipo
31/02/2021, che per default invece viene accettata e interpretata come 03/03/2021.

Il seguente spezzone di codice istanzia un oggetto Date con la data corrente e la
visualizza a video nel formato SHORT:

Date d = new Date();

DateFormat formatoData;

formatoData = DateFormat.getDateInstance(DateFormat.SHORT,
Locale.ITALY);

String s = formatoData.format(d);

System.out.println(s);

Il codice seguente stampa la data odierna senza formattazione e con le diverse
formattazioni dovute ai diversi stili.

import java.util.*;
import java.text.DateFormat;

public class Main {
public static void main(String[] args){
Date data= new Date();

System.out.println(data);
int formati[] = {DateFormat.SHORT,DateFormat.MEDIUM,
DateFormat.LONG, DateFormat.FULL};
for(int £ : formati) {
DateFormat formatoData = DateFormat.getDateInstance(f,
Locale.ITALY);
String s = formatoData.format(data);

System.out.println(s);

1 import java.util.x;

2 import java.text.;

3 public class Main {

4 public static void main(String[] args) {

5 Date data= new Date();

6 System.out.println(data);

7 int formati[] = {DateFormat.SHORT, DateFormat.MEDIUM, DateFormat.LONG, DateFormat.FULL};
8 for(int f : formati) {

9

10 DateFormat formatoData = DateFormat.getDateInstance(f, Locale.ITALY);
11 String s = formatoData.format(data);

12 System.out.println(s);

13 }

14 }

15 }

16

Console Shell

javac -classpath .:/run_dir/junit-4.12.jar:/run_dir/hamcrest-core-1.3.jar:/run_dir/json-simple-1.1.1.jar -d
n.java

java -classpath .:/run_dir/junit-4.12.jar:/run_dir/hamcrest-core-1.3.jar:/run_dir/json-simple-1.1.1.jar Main
Sat Dec 04 16:08:11 UTC 2021

04/12/21

4-dic-2021

4 dicembre 2021
sabato 4 dicembre 2021

Il codice che segue utilizza il metodo parse(String data) per trasformare una stringa
in un oggetto Date.

import java.util.*;
import java.text.DateFormat;
import java.text.ParseException;
public class Main {
public static void main(String []args){
String s;
Date d = null;

System.out.println("Inserisci la data
[gg/mm/yyyy]: ");

Scanner in = new Scanner(System.in);

s = in.nextLine();

326

try{
DateFormat formatoData =

DateFormat.getDateInstance(DateFormat.SHORT,
Locale.ITALY);

formatoData.setlLenient(false);
d = formatoData.parse(s);
} catch (ParseException e) {
System.out.println("Formato data non
valido.");

}

System.out.println(d);

La classe SimpleDateFormat

La classe SimpleDateFormat € una classe derivata dalla classe DateFormat, quindi,
eredita i metodi pubblici della superclasse, ai quali si aggiungono i propri. La classe
SimpleDateFormat consente di definire dei pattern personalizzati per I'output.
Costruttori

SimpleDateFormat () formato della data per le impostazioni locali predefinite.

SimpleDateFormat (String pattern) formato della data secondo il pattern.

SimpleDateFormat (String pattern, DateFormatSymbols formatSymbols)
formato della

data usando il modello e i simboli di formato data indicati.

327

SimpleDateFormat (String pattern, Locale locale) formato della data specificando
i simboli del formato per le impostazioni locali specificate.

String pattern = "dd-MM-yyyy":
SimpleDateFormat formato;
formato = SimpleDateFormat (pattern);

String data = formato.format (Date ());
System.out.println(data);

E possibile analizzare una stringa e trasformala in un oggetto Date utilizzando il
metodo

parse() dell'oggetto SimpleDateFormat.

Esempio:

String pattern = "dd-MM-yyyy";

SimpleDateFormat formato = SimpleDateFormat
(pattern);

Date data = SimpleDateFormat.parse("09-03-1963");
System.out.println(data);

Fuso orario

ST &S
/ 2 ; - o = > . 5
| < -4 b T "-;?“ ¢ 5> - ,_..\'“

Gli esempi mostrati utilizzano il fuso orario predefinito del sistema.

328

E possibile impostare il fuso orario utilizzando il metodo:

seTimeZone()

di un oggetto SimpleDateFormat.

I metodo setTimeZone () accetta come parametro un'istanza java.util. Timezone.
Ecco un esempio che mostra come impostare il fuso orario:

SimpleDateFormat formato = new SimpleDateFormat("dd/MM/yyyy HH: mm:
ssZ");

formato.setTimeZone(TimeZone.getTimeZone("Europe/Rome"));

import java.util.*;
import java.text.*;
public class Main {
public static void main(String[] args) {
Date data= new Date();
SimpleDateFormat df = new SimpleDateFormat("dd-MM-yyyy
HH:mm:ssz");
df.setTimeZone (TimeZone.getTimeZone("Europe/Rome"));

System.out.println("Fuso orario di roma:"+
df.format(data));

df.setTimeZone
(TimeZone.getTimeZone("Europe/London"));
System.out.println("Fuso orario di Londra:"+
df.format(data));

Output:

Fuso orario di roma:05-12-2021 10:51:31CET
Fuso orario di Londra:05-12-2021 09:51:31GMT

329

Calendar e GregorianCalendar

La classe Calendar € una classe astratta che definisce tutti i metodi per la gestione e
manipolazione delle date.

Ad esempio, puo:

1. Aggiungi un mese o un giorno alla data corrente

2. Controllare se I'anno & bisestile;

3. Restituire singoli componenti della data (ad esempio, estrarre il numero del
mese da una data intera)

Un altro importante potenziamento della classe Calendar €& la costante
Calendar.ERA, con cui & possibile indicare una data antecedente all'era volgare (BC
- prima di Cristo) o all'era volgare (AD - Anno Domini).

La classe Calendar non pud essere istanziata perché € una classe astratta, quindi
per il suo utilizzo &€ necessario fare riferimento a una sua implementazione. Per
ottenere un'istanza della classe Calendar si puo:

1. Utilizzare il metodo statico getinstance() della classe Calendar che restituisce
un'istanza di Calendar in base all'ora corrente nel fuso orario predefinito con le
impostazioni internazionali predefinite.

2. Utilizzare la classe java.util.GregorianCalendar che €& un'implementazione
della classe Calendar. new GregorianCalendar(); inizializza il calendario con la
data e l'ora correnti nel fuso orario con le impostazioni internazionali del
sistema operativo:

Esempio:

Calendar data = Calendar.getlnstance();

Calendar data2 = new GregorianCalendar();

Si inizializza I'oggetto Calendar con la data e l'ora predefinite in base alle
impostazioni internazionali del sistema operativo.

E possibile anche specificare una combinazione di data, ora locale e fuso orario per
far questo la classe astratta fornisce dei metodi per la conversione della data tra uno
330

specifico istante temporale e una serie di campi del calendario come: MONTH,
YEAR. HOUR, ecc. E la classe GregorianCalendar mette a disposizione vari
costruttori.

Metodi di calendar

Calendar.getinstance0): Calendar.getinstance (TimeZone zona)
Calendar.getinstance (Locale aLocale)

Calendar.getinstance (TimeZone zona, Locale alLocale)

Costruttori di GregorianCalendar

new GregorianCalendar(2018, 6, 27, 16, 16, 47); si specifcano I'anno, il mese, il
giorno, l'ora di inizio, il minuto e il secondo per il fuso orario predefinito con le
impostazioni internazionali predefinite.

new GregorianCalendar(T imeZone.getTimeZone("GMT+5:30")); Si passa il fuso
orario come parametro per creare un calendario in questo fuso orario con le
impostazioni internazionali predefinite.

new GregorianCalendar(new Locale("en", "IN")); Si passano le impostazioni
internazionali come parametro per creare un calendario in questo locale con il fuso
orario predefinito.

new GregorianCalendar(TimeZone.getTimeZone("GMT+5:30"), new

Locale("en", "IN")); Si passano sia il fuso orario che le impostazioni locali come
parametri.

331

Metodi

METODO DESCRIZIONE

Viene utilizzato per aggiungere o sottrarre la
abstract void add (int field, int amount) quantita di tempo specificata al campo calendario
specificato, in base alle regole del calendario.

Viene utilizzato per restituire il valore del campo

Ly calendario specificato.

Viene utilizzato per restituire il valore massimo per
abstract int getMaximum (int field) il campo del calendario specificato di questa
istanza di Calendar.

Viene utilizzato per restituire il valore minimo per il
abstract int getMinimum (campo int) campo del calendario specificato di questa
istanza di Calendar.

Viene utilizzato per restituire un oggetto Date che
Data getTime () rappresenta il valore temporale di questo
calendario.

import java.util.Calendar;

public class Main {
public static void main (String [] args) {
Calendar calendar = Calendar.getInstance ();

System.out.println ("La data corrente é:" + calendar.getTime ());
calendar.add (Calendar.DATE, - 15);
System.out.println ("15 giorni fa:" + calendar.getTime ());

calendar = Calendar.getInstance ();

calendar.add (Calendar.MONTH,4);

System.out.println ("tra 4 mesi:" + calendar.getTime ());
calendar = Calendar.getInstance ();

calendar.add (Calendar.YEAR, 2);

System.out.println ("tra 2 anni:" + calendar.getTime ());

}

a version "1.8.0_31"

a(TM) SE Runtime Environment (build 1.8.0_31-b13)

a HotSpot(TM) 64-Bit Server W (build 25.31-b@7, mixed mode)
data corrente é:Tue Jan 15 10:17:31 UTC 2019

giorni fa:Mon Dec 31 10:17:31 UTC 2018
4 mesi:Wed May 15 10:17:31 UTC 2019
2 anni:Fri Jan 15 10:17:31 UTC 2021

Codice

332

https://replit.com/@RolandoSucco/Calendario#Main.java

e |l campo MONTH della classe Calendar non vada 1 a 12 mada 0 a 11, dove O
€ gennaio e 11 dicembre.
e |l giorno della settimana va da 1 a 7 , ma domenica, e non il lunedi & il primo
giorno della settimana.
e 1 =domenica, 2 = lunedi, 7 = sabato.

Per ottenere informazioni sul’ANNO, MESE, GIORNO e ORA si utilizza il metodo:

passandogli come paramentro le costanti statiche definite nella classe (YEAR,
MONTH, DAY, ..)

int anno = dataAttuale.get(GregorianCalendar.YEAR);

int mese = dataAttuale.get(GregorianCalendar. MONTH) + 1;//i mesi
partono da 0

int giorno = dataAttuale.get(GregorianCalendar.DATE);

int ore = dataAttuale.get(GregorianCalendar.HOUR);

int minuti = dataAttuale.get(GregorianCalendar.MINUTE);

int secondi = dataAttuale.get(GregorianCalendar.SECOND);

La classe GregorianCalendar implementa dei metodi per effettuare confronti ed
operazioni con le date. Di seguito sono riportati a cuni esempi.

Confronto di due date

GregorianCalendar datal new GregorianCalendar (2008,
11, 18);

GregorianCalendar data2 new GregorianCalendar (2007,
11, 10);

if (datal.before(data2)) {

System.out.println("data 1 precede data 2"):
}telse if (datal.after(data2)) f
System.out.println("data2 precede data 1"):
felse{

System.out.println("Le date sono uguali");

333

| campi del calendario possono essere modificati usando i metodi:

add (), roll () e set ().

I metodo add (): ci consente di aggiungere tempo al calendario in un'unita
specificata in base al set di regole interne del calendario, L'esecuzione del metodo
adi () impone un ricalcolo immediato dei millisecondi del calendario e di tutti i campi.

Il metodo roll(): aggiunge una quantita al campo del calendario specificato senza
modificare i campi piu grandi.

il metodo set (): permette di impostare direttamente un campo del calendario su un
valore specificato Il valore temporale del calendario in millisecondi non viene
ricalcolato fino a quando non viene effettuata la chiamata successiva a get (),
getTime (), add () o roll ().

Pertanto, piu chiamate a set () non attivano calcoli superflui.

1 import java.util.Calendar;

2 import java.util.GregorianCalendar;

3 - public class Main {

4 public static void main (String [] args) {

5 Calendar calendar = new GregorianCalendar(2021, Calendar.JANUARY , 25);
6 calendar.set(Calendar.HOUR, 19);

7 calendar.set(Calendar.MINUTE, 42);

8 calendar.set(Calendar.SECOND, 12);

9 System.out.println("data scelta:"+calendar.getTime());

10

11 calendar.add(Calendar.MONTH, -2); a

12 System.out.println("due mesi prima:"+calendar.getTime());
13

14 H

15 ¥

onsole Shell

javac -classpath .:/run_dir/junit-4.12.jar:/run_dir/hamcrest-coxe-1.3.jar:/run_dir/json-simple-1.1.1.jar -d . Main.java
java -classpath .:/run_dir/junit-4.12.jar:/run_dir/hamcrest-core-1.3.jar:/run_dir/json-simple-1.1.1.jar Main

ata scelta:Mon Jan 25 19:42:12 UTC 2021
ue mesi prima:Wed Nov 25 19:42:12 UTC 2028

Codice

I metodo add() non ha solo causato la modifica del mese: anche I'anno & cambiato
dal 2021 al 2020

334

https://replit.com/@RolandoSucco/CalendarioModifica#Main.java

output
data scelta: Mon Jan 25 19:42:12 UTC 2021

due mesi prima con il metodo roll()):Thu Nov 25 19:42:12 UTC 2021

1 import java.util.Calendar;

2 import java.util.GregorianCalendar;

3 = public class Main {

4 public static void main (String [] args) {

5 Calendar calendar = new GregorianCalendar(2021, Calendar.JANUARY , 25);
6 calendar.set(Calendar.HOUR, 19);

7 calendar.set(Calendar.MINUTE, 42);

8 calendar.set(Calendar.SECOND, 12);

9 System.out.println("data scelta:"+calendar.getTime());

11 calendar.roll(Calendar.MONTH, -2); .
12 System.out.println("due mesi prima con il metodo roll)=:"+calendar.getTime());

14 }

Codice

Un altro aspetto interessante di questa classe € lavorare con le ere. Per creare una
data "BC", si utilizza il campo Calendar.ERA.

Per creare la data di nascita di Giulio Cesare 15 marzo 44 a.C.

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.GregorianCalendar;
public static void main(String[] args){
GregorianCalendar cesare = new GregorianCalendar (44,

Calendar.MARCH, 15);
cesare.set(Calendar.ERA, GregorianCalendar.BC);
DateFormat df = new SimpleDateFormat("dd MMM, yyy GG");
System.out.println(df.format(cesare.getTime()));

}

Abbiamo usato la classe SimpleDateFormat per stampare la data in un formato piu
facile da capire (le lettere "GG" indicano che vogliamo che venga visualizzata I'era).

335

https://replit.com/@RolandoSucco/CalendarioRoll#Main.java

336

