
 Appunti Java

 Introduzione a Java 6
 I paradigmi della programmazione 7
 Struttura di un programma 9

 Classe eseguibile (metodo main) 10

 Variabili e Data Type 16
 Variabili 17
 Tipi di dati primitivi 21

 Tipi di dati interi (Literal) 22
 Tipi di dati a virgola mobile Literal 24
 Tipo di dato primitivo letterale(char) 26
 Literal Boolean 27
 Literal String 28

 Tipi di dati interi, casting e promotion 28
 Casting Esplicto 30
 Conversione di Tipo all'interno delle espressioni casting e promotion 30

 Costanti 34

 Operatori aritmetici 35

 Introduzione all'input 37
 La classe Scanner 37

 Strutture di controllo del flusso 44
 Struttura di selezione singola if 46
 Struttura di selezione doppia if/else 50
 Operatori booleani 54
 Struttura di selezione multipla switch/case 56

 Multi-case 59
 Operatore ternario ?: 61
 Loop 62

 Struttura di iterazione while 63
 Struttura di iterazione do/while 65
 Struttura di iterazione for 67
 Istruzioni break, continue 68

 Programmazione orientata agli Oggetti 70
 Istanze 74
 Variabili d'istanza 76
 Costruttore 79
 Dichiarazione e implementazioni dei metodi 83

 metodo toString 83
 Metodo set 85
 Metodo get 87

 Scope 88
 Parametri formali 89

 Variabili di classe (static) 90
 1

 Array 93
 Dichiarazione 94
 Inizializzazione di un array e accesso ai suoi elementi 96
 Ciclo avanzato for-each 99
 Utilizzare gli array nei metodi 100
 Operazioni sugli array 102

 La ricerca sequenziale 102
 Riduzione 104
 Ordinamento di un Array 105

 Ordinamento per sostituzione(exchange sort) 105
 La classe Arrays 110

 Il paradigma della OOP 112
 Incapsulamento 112
 Ereditarietà 114

 La parola chiave extends 116
 Ereditarietà e costruttori 119

 La parola chiave super 120
 Gerarchie di classi 121

 Upcasting, downcasting 122
 L'operatore instanceof 124

 Polimorfismo 126
 Polimorfismo per metodi 126

 Overload 127
 Override 128

 Il modificatore final 129
 Binding Dinamico 129

 Metodi per cui il binding dinamico non viene applicato 134
 Classi astratte 136
 Interfacce 140

 Metodi statici (Java 8) 142
 Metodi di default e interfacce funzionali (Java 8) 143

 Enum in Java 145

 Eccezioni 149
 Gestire le Eccezioni (processare l'eccezione quando accade) 152
 finally 155
 Propagazione: l'istruzione throws 157
 Lancio di eccezioni: il costrutto throw 158
 Eccezioni definite dall'utente 159

 Stringhe 161
 Lunghezza della stringa 165
 Estrazione di caratteri da una stringa 165
 Ricerca di una stringa 166
 Concatenazione 167
 Trasformazione 168
 Estrazione (sotto stringa) substring 168

 2

 Confronto 169
 Sostituzione del contenuto in una stringa 170
 Trasformare una stringa in un Array 170
 Metodi utili 171

 Programmazione generica 173
 Generics e tipi parametro 175
 Classi con più parametri generici 178
 Parametri di tipo delimitati (bounded Types) 179
 Metodi generici 181
 Costruttore Generico 183
 Interfacce generiche 184

 L'INTERFACCIA COMPARABLE 185
 L'INTERFACCIA COMPARATOR 188

 Collection 192
 Collection<T> 194

 COSTRUTTORI 196
 METODI 198

 Interfaccia List 202
 La classe ArrayList<E> 206

 Costruttori 207
 Metodi 207

 La classe LinkedList<E> 209
 Costruttori 210
 Metodi 210

 ARRAYLIST E LINKEDLIST A CONFRONTO 214
 L'interfaccia Iterator<T> 214
 Metodi 215
 l'interfaccia Listlterator<E> 217

 Metodi 217
 Le Code 221

 L'interfacce Queue<E> 222
 Metodi 223

 La Classe PriorityQueue<E> 226
 Costruttori: 227

 L'interfaccia Deque <E> 231
 La classe ArrayDeque<E> 233

 Costruttori 233
 Interface Set<E> 235

 Metodi 236
 I bucket array 237
 Funzioni hash 238

 La classe HashSet<E> 239
 Costruttori 239

 L'interfaccia SortedSet<E> 241
 La Classe TreeSet<E> 242

 Costruttori 242

 3

 Le mappe 246
 Interface Map<K,V> 248
 La classe HashMap 250

 Iterare le HashMap 254
 Ordinamento HashMap 259

 Interface SortedMap<K,V) 260
 La Classe TreeMap<K,V> 261

 Costruttori 261
 Metodi 262

 Input-output da File 267
 Introduzione alla gestione dei file 269
 La Classe File: 270
 File di testo e file binari 274

 File di testo 275
 Scrittura di un File di Testo 276

 java.io.FileWriter 276
 Costruttori 276
 Metodi 277

 Lettura di un file di testo 281
 La classe FileReader 282

 Costruttori 282
 Metodi di lettura 282

 Nuovo I/O – Lettura di testo 286
 File binario 287

 FileOutputStream 288
 Costruttori 288
 Metodi 288

 ObjectOutputStream 290
 Costruttore 290

 Input File Binario 292
 FileInputStream 293

 Costruttori 293
 Metodi 293

 Stream e file ad accesso diretto 297
 Costruttori 297
 Metodi 298

 Metodi in lettura 298
 Metodi di scrittura 298

 La gestione delle date 301
 Classe Date 302

 I costruttori di un oggetto Date: 303
 Metodi 303

 La classe DateFormat 304
 La classe SimpleDateFormat 307

 Costruttori 307
 Fuso orario 308

 4

 Calendar e GregorianCalendar 310
 Metodi di calendar 311
 Costruttori di GregorianCalendar 311
 Metodi 312

 5

 Introduzione a Java

 Java è un linguaggio di programmazione con le seguenti caratteristiche:

 1. Object Oriented (orientato agli oggetti
 2. Portabile, ovvero l’indipendenza dal sistema operativo. Gli elementi che

 rendono il linguaggio Java portabile sono:
 1. Java Virtual Machine (La macchina virtuale o JVM)
 2. Java Platform

 La macchina virtuale

 Java Virtual Machine o JVM è un software che si occupa di eseguire i programmi
 tradotti in bytecode dal compilatore. La JVM è una CPU virtuale: traduce i bytecodes
 nelle istruzioni macchina della CPU del dispositivo reale sul quale si vuole eseguire il
 programma

 6

 Vantaggi e svantaggi di Java

 Vantaggi:

 ● indipendenza del linguaggio bytecode: consente di eseguire lo stesso
 programma su più dispositivi dotati di JVM

 ● velocità di sviluppo
 ● grande disponibilità di librerie
 ● alta integrazione con il web

 Svantaggi:

 ● Velocità di esecuzione: il programma viene eseguito ed elaborato dalla JVM
 che a sua volta traduce le istruzioni in linguaggio macchina. Pertanto il tempo
 di esecuzione è leggermente più lento rispetto ad un programma scritto in
 C++.

 ● Attraverso la de compilazione è possibile risalire al codice sorgente (a meno di
 usare opportuni strumenti che si chiamano java obfuscator)

 I paradigmi della programmazione

 Un paradigma è l'approccio che si segue per risolvere un problema (insieme d'idee) I
 paradigmi più comuni:

 –Imperativo (importante è l'algoritmo e la programmazione strutturata) ==> dati e
 funzioni sono separati

 –A oggetti (importante è l'oggetto, descritto dai dati e dalle funzioni, dette metodi,
 che operano sui dati) ==> dati e funzioni non sono più separati

 7

 Vantaggi della OOP:

 –Riutilizzo massiccio del codice: si usa un oggetto già creato (e testato) da altri
 programmatori. Un oggetto può essere usato anche per crearne un altro grazie
 all'ereditarietà.

 Cosa bisogna sapere di un oggetto?

 –Come si usa, non come è fatto!

 –Esempio: per assemblare un PC, si usano oggetti (schede madri, CPU, schede
 video etc) già creati da altri.

 E' necessario sapere la CPU come è fatta?

 Parole riservate del JDK: Keywords

 8

 Struttura di un programma

 I programmi in Java sono costituiti da classi. Potrebbero esserci decine di migliaia di
 classi. Un programma minimo è costituito da almeno una classe. Per ogni classe,
 viene creato un file separato. Il nome del file corrisponde al nome della classe.

 Gli elementi che compongono una classe sono:

 1. Metodi
 2. Attributi

 I metodi e gli attributi in un programma Java devono essere contenuti in una classe:

 Il codice di una classe è costituito dal nome della classe e dal corpo della classe
 racchiuso tra parentesi graffe.

 public class Main{

 }

 9

 Gli attributi descrivono le proprietà della classe mentre i metodi sono le azioni che si
 possono compiere.

 Classe eseguibile (metodo main)

 Per poter essere eseguito un programma Java si deve rendere eseguibile una sua
 classe. Per far questo bisogna definire nella classe che si vuole rendere eseguibile
 un metodo chiamato main();

 1. La parola chiave public indica che il metodo può essere invocato da qualsiasi
 luogo

 2. La parola chiave static indica che il metodo può essere invocato senza creare
 un’istanza della classe

 3. La parola chiave void indica che il metodo non restituisce alcun valore
 4. La variabile d ell’array args contiene argomenti inseriti nella riga di comando

 se non ci sono argomenti, l'array è vuoto

 Questi concetti saranno visti nei prossimi argomenti. Per ora bisogna sapere come
 scrivere ed eseguire un semplice programma Java con il metodo principale.

 10

 class Main {

 public static void main (String[] args) {

 System. out .println("Hello world!"); //out in java

 }

 }

 L’output su schermo si ottiene tramite il comando :

 System.out.println()
 Tra parentesi si scrive l’argomento da stampare.

 ● System.out.println(1); Visualizza il numero 1 sullo schermo
 ● System.out.println("Java"); Visualizza "Java" sullo schermo
 ● System.out.println("Java e C++"); Visualizza "Java e C++" sullo schermo

 Questo metodo ha due versioni:

 1. System.out.println() stampa e manda a capo il cursore, se si usa più volte ogni
 volta l’argomento passato viene visualizzato su una riga separata.

 2. System.out.print(), il testo viene visualizzato sulla stessa riga.

 La classe che avvia il programma può avere qualsiasi nome, ma il metodo principale
 deve sempre avere lo stesso aspetto:

 public class Home

 {

 // parte invariante

 public static void main (String[] args)

 {

 //CODICE DEL METODO

 }

 }

 11

 Se il metodo principale ha una dichiarazione non valida, sono possibili due casi:

 1. Il programma non può essere compilato
 2. Il programma è stato compilato correttamente ma non può essere avviato

 Il programma non può essere compilato

 È il caso in cui la dichiarazione del metodo principale viola la sintassi di Java.

 Esempio:

 public static main(String[] args)

 nessun valore restituito

 Il programma può essere compilato ma non può essere eseguito:

 È il caso in cui il metodo, è scritto in modo corretto come metodo normale, ma non
 soddisfa il requisito del metodo principale

 Esempio:

 public static void main(String args)

 dovrebbe essere String [] args

 public void main(String[] args)

 manca la parola static

 Quindi, il metodo principale è il punto d'ingresso di qualsiasi programma Java. Ha
 una sintassi molto specifica che bisogna ricordare.

 Per realizzare un programma e renderlo eseguibile si devono compiere i seguenti
 passi:

 1. Scrivere il codice sorgente;

 2. compilare il codice sorgente;

 12

 3. eseguire il codice compilato.

 Per editare il codice Java si può usare qualsiasi editor di testi e salvarlo in un file con
 estensione .java. Il nome da dare al file corrisponde al nome della classe. Se il
 programma è composto da più classi, si deve memorizzare ogni classe in un file
 diverso.

 Per compilare il programma occorre usare il Prompt dei comandi. Il compilatore Java
 viene richiamato usando il seguente comando:

 La compilazione genera un file compilato che ha estensione .class e rappresenta il
 bytecode.

 Per eseguire il programma bisogna attivare l’interprete Java. L’interprete prende il
 codice compilato (bytecode), lo traduce in codice macchina e lo esegue.
 L’interprete Java viene richiamato usando il comando:

 Il nome del file passato all’interprete corrisponde alla classe che contiene il metodo
 main.

 Esistono molti IDE che permettono di eseguire tutte le precedenti operazioni esempi

 eclipse, netbeans ecc…

 Definizione di una classe

 Un programma Java è costituito da classi: ogni classe è memorizzata in un singolo
 file, il cui nome coincide con il nome della classe. L'estensione del file è java.

 Un programma consiste in una serie di file con l'estensione 'java', e ogni file
 contiene il codice per una sola classe

 13

 Se un file si chiama Moto.java, contiene la classe Moto.

 Quando si hanno molti file si raggruppano in cartelle e sottocartelle, inoltre le classi
 sono raggruppate in pacchetti e sotto-pacchetti.

 I package

 I package rappresentano un meccanismo per organizzare classi Java in sottogruppi
 ordinati. Si tratta di uno strumento utile per organizzare le classi in modo logico e
 ordinato sotto un unico nome. Le classi principali della libreria di base di Java sono
 raccolti nel package java.lang. I package consentono anche di creare classi
 pubbliche con nomi uguali. È sufficiente collocarle in package diversi. Il nome di un
 package deve essere univoco. Per usare una classe di un package si usa la parola
 chiave package seguita dal percorso della classe. La strutturazione dei tipi in
 package consente di raggiungere i seguenti scopi.

 ● Evitare conflitti di nome tra tipi, poiché il nome della classe è parte del nome
 del package.

 ● Riusare tipi già scritti da altri programmatori importando i relativi package.
 ● Raggruppare i tipi secondo criteri funzionali e di correlazione.

 I nomi dei pacchetti e dei sotto pacchetti vanno indicati nel codice della classe, e
 devono avere lo stesso nome delle cartelle.

 Quindi, da un lato, ci sono i file archiviati nelle cartelle e dall'altro le classi
 memorizzate nei pacchetti. Un nome di classe deve anche coincidere con il nome
 del file. Il nome del pacchetto coincide con il nome della cartella in cui è archiviata la
 classe.

 14

 Variabili e Data Type

 Per introdurre i primi concetti risolviamo un problema di matematica da prima
 elementare e vediamo i passi da fare per risolverlo.

 Roberta ha 20 biscotti e ne mangia 11. Quanti biscotti rimangono a Roberta?

 Scomponiamo il problema nei passi elementari:

 20 biscotti

 11 mangiati

 Quanti biscotti rimangono?

 Le prime due righe rappresentano i dati d'input, la terza riga la logica di risoluzione e
 la quarta riga l'output.

 Convertiamo questo pseudo codice in java:

 Bisogna inserire il codice dentro il metodo main in una classe:

 public class Main {

 public static void main (String[] args)

 15

 {

 int biscotti;

 biscotti = 20 ;

 int mangiati= 11 ;

 int biscottiRimasti=biscotti-mangiati;

 System. out .println("biscotti rimasti " +biscottiRimasti);

 }

 }

 In queste semplici righe di codice abbiamo introdotto alcuni concetti fondamentali:

 Variabili

 Tramite la keyword int, si dichiara che biscotti è una variabile (di tipo intero) ,
 ossia un contenitore che permette di salvare, aggiornare e recuperare i dati.

 Una variabile in Java ha tre proprietà importanti:

 tipo, nome e valore.
 Il nome, ci permette di distinguere una variabile da un'altra. È come un'etichetta su
 una scatola.

 Rappresenta un nome che si assegna a uno spazio di memoria alterabile. Il nome
 della variabile, rappresenta l’indirizzo fisico in memoria. Serve per identificare la
 locazione della variabile in memoria al fine di accedere o modificarne il valore
 durante l’esecuzione.

 16

 Una variabile può memorizzare solo dati il cu i tipo è uguale al suo .

 Il valore assegnato alla variabile può essere modificato durante l’esecuzione del
 programma, ma il nome e il tipo rimangono inalterati.

 Nell’utilizzo delle variabili distinguiamo due fasi:

 1. Dichiarazione: si effettua utilizzando la parola chiave che identifica il tipo
 seguita da un identificatore.

 17

 tipo biscotti;
 Questa istruzione crea una nuova variabile (contenitore) che si chiama biscotti, tale

 variabile ancora non è definita ossia non contiene nessun valore.

 2. Assegnazione : si effettua utilizzando l’operatore di assegnamento,
 rappresentato dal simbolo uguale (=) Seguito dal valore da attribuire,
 ricordando che tale valore deve essere dello stesso tipo della variabile in
 questione.

 biscotti=20 ;
 Viene valorizzata la variabile con il valore 20, (inseriamo un contenuto nella scatola).

 Le due fasi si possono raggruppare in un unica istruzione:

 18

 int mangiati=11;
 Ogni dichiarazione/inizializzazione può essere effettuata su più variabili in una sola
 riga utilizzando il simbolo di virgola (,).

 Codice

 Il nome delle variabili delle costanti, dei metodi e degli oggetti viene detto
 identificatore e deve rispettare alcune regole:

 ● non deve coincidere con una delle parole chiave del linguaggio;
 ● non può iniziare con un numero;
 ● non può contenere caratteri speciali come ad esempio:

 ● lo spazio,
 ● il trattino (-),
 ● il punto interrogativo (?),
 ● il punto (.),

 ● Sono però ammessi:
 ● l’underscore (_)
 ● il simbolo del dollaro ($).

 Java è case sensitive, quindi i nomi miaVariabile e MiaVariabile indicano due variabili
 diverse. Per convenzione il nome di una variabile viene scritto in minuscolo e se è
 composta da più parole si utilizza la rappresentazione a gobba di cammello ossia si
 scrivono in maiuscolo le iniziali delle parole che seguono la prima:

 int biscottiRimasti

 19

http://jdoodle.com/ia/kJI

 Java è un linguaggio fortemente tipizzato, di ogni variabile si deve specificare il Data
 Type di appartenenza il quale classifica in modo preciso:

 ▪ un insieme di valori

 ▪ le operazioni definite su tali valori.

 Per esempio, il data type int, definisce un insieme di valori Interi, più un insieme di
 operazioni ammesse su tali valori (addizione, sottrazione, e così via).

 In Java esistono due tipi di dato:

 1. Primitivi
 2. Riferimento

 Tipi di dati primitivi

 Java definisce otto tipi di dati primitivi:

 ▪ Interi: byte, short, int, long. (differiscono solo per il numero di byte occupati)

 ▪ floating point (o a virgola mobile): float e double

 ▪testuale: char.

 ▪logico-booleano: boolean.

 20

 Tipi di dati interi (Literal)

 Literal è la forma letterale con cui si può rappresentare un tipo primitivo all’interno
 del codice sorgente, e in questa forma il compilatore è in grado di determinare il data
 Type di riferimento.

 Un numero intero può essere rappresentato come un insieme di valori espressi in
 base Decimale.

 Oltre alla notazione decimale si possono usare anche le notazioni:

 Binaria: la notazione che utilizzano i processori dei computer, composta solo da 0 e
 1. Bisogna anteporre al numero intero, uno 0 (zero) e una b (maiuscola o
 minuscola).

 21

 Ottale: si utilizzano solo i numeri da 0 a 7. Bisogna anteporre al numero intero uno 0
 (zero).

 Esadecimale: si utilizzano oltre ai numeri da 0 a 9 anche le lettere da A ad F.
 Bisogna anteporre al numero intero 0 (zero) e una x (indifferentemente maiuscola o
 minuscola).

 Esempi:

 byte b = 10; //notazione decimale: b vale 10

 short s = 022; //notazione ottale: s vale 18

 long l = 0x12acd; //notazione esadecimale: l vale 76493

 22

 int i = 1000000000; //notazione decimale: i vale 1000000000

 int n = 0b10100001010001011010000101000101 //notazione binaria: //n vale
 -1589272251

 Tipi di dati a virgola mobile Literal

 I numeri floating point (a virgola mobile)sono quei numeri composti da due parti:

 1. un parte intera

 2. una parte decimale

 La forma literal prevede che queste due parti siano separate da un punto.

 Questa è la forma più comune di rappresentare i numeri reali, esiste anche la
 possibilità di rappresentare un floating point con la notazione detta
 scientifica(esponenziale).

 In tale rappresentazione si:

 Prende una sola cifra per la parte intera

 Si aggiunge il suffisso e (esponenziale)

 il numero che segue il suffisso si chiama esponente e rappresenta una potenza di
 dieci che moltiplicata per il numero ritorna il numero di partenza

 23

 Java utilizza per i valori floating point (a virgola mobile) lo standard di decodifica
 IEEE-754. I due tipi che possiamo utilizzare sono:

 Per default un literal in virgola mobile viene considerato da java come un double.

 Per assegnare un valore a virgola mobile a un float, non possiamo fare a meno di un
 cast. Per esempio, la seguente riga di codice provocherebbe un errore in
 compilazione:

 float f = 3.14;

 il cast con la sintassi breve:

 float f = 3.14F;
 La “effe” può essere sia maiuscola sia minuscola.

 Esiste, per quanto ridondante, anche la forma contratta per i double:

 double d = 10.12E24; è equivalente a double d = 10.12E24D;

 Alcune operazioni matematiche potrebbero dare risultati che non sono compresi
 nell’insieme dei numeri reali (per esempio “infinito”). Nella libreria standard sono
 definite delle classi dette classi wrapper (in italiano classi involucro), che non sono
 altro che classi che rappresentano i tipi di dati primitivi. Gli oggetti istanziati da
 queste classi sono interscambiabili con i dati primitivi grazie alla caratteristica di Java
 nota come autoboxing-autounboxing. È per questo che le classi wrapper Double e
 Float forniscono le seguenti costanti statiche:

 ● Float.NaN Float.NEGATIVE_INFINITY Float.POSITIVE_INFINITY
 ● Double.NaN Double.NEGATIVE_INFINITY Double.POSITIVE_INFINITY

 Dove NaN sta per “Not a Number” (“non un numero”).

 24

 Tipo di dato primitivo letterale(char)

 Il tipo char permette di immagazzinare caratteri (uno per volta). Per caratteri si
 intendono:

 Java utilizza l’insieme 16 bit per memorizzare un carattere e usa lo standard
 Unicode per la decodifica dei caratteri. Per rappresentare un carattere si utilizzano
 gli apici singoli

 ‘A ‘ ‘ ‘ ‘3’ ecc…

 25

 Si possono specificare delle sequenze particolari che iniziano con il simbolo di
 escape

 \

 Literal Boolean

 Il data Type boolean è un data type che ammette solo due valori logici, true e false
 che non vengono convertiti in una rappresentazione numerica. Il true in Java non è
 uguale a 1, ne il valore false è uguale a 0. In Java, i valori literal boolean possono
 essere assegnati solo a variabili dichiarate come booleane o utilizzate in espressioni
 con operatori booleani.

 26

 Literal String

 I valori literal delle stringhe in Java sono specificati racchiudendo una sequenza di
 caratteri tra una coppia di virgolette. Esempi

 "Ciao mondo"

 "due \ n"

 Le sequenze di escape funzionano allo stesso modo all'interno di stringhe. Le
 stringhe in Java devono iniziare e finire sulla stessa riga.

 Tipi di dati interi, casting e promotion

 27

 Quando si assegna una variabile a un altra variabile java effettuerà una conversione
 automatica (implicita) con ampliamento dei valori. Tale conversione è attuata,
 tuttavia, solo se si verificano due condizioni:

 1. I tipi sono compatibili tra loro

 2. il tipo finale è più grande del tipo iniziale.

 Essa è sempre lecita fra tipi interi (int, byte, short e long), decimali (double float) e
 char, ma non con i tipi boolean.

 28

 Casting Esplicito

 Se i tipi sono incompatibili, si può provare comunque ad assegnare il valore
 effettuando un'operazione di conversione esplicita con riduzione del valore tramite
 un operatore definito di cast che ha la sintassi che segue:

 (target-type)exp
 Dove target-type è il tipo di dato in cui si vuole convertire l'espressione. Nell'attuare
 la conversione possono verificarsi i seguenti casi:

 ● Se si forza l'assegnamento di una variabile contenente un valore decimale a
 una variabile di tipo intero, si avrà un troncamento della sua parte frazionaria;

 ● Se si assegna un valore di una variabile che è più grande del valore massimo
 contenibile nell'altra variabile, sarà assegnato un valore (detto modulo) che
 rappresenta il resto della divisione tra i due valori.

 int a;

 doubled=123,45;

 a= (int)d; //123

 Conversione di Tipo all'interno delle espressioni casting e promotion

 Un espressione può contenere variabili costanti operatori e valori numerici (literal),
 se sono presenti tipi di dati differenti java esegue una promozione applicando delle
 regole.

 29

 ● Se uno degli operandi è long, l'altro operando sarà convertito in long; altrimenti
 ● se uno degli operandi è un float, l'altro operando sarà convertito in float;

 altrimenti
 ● se uno degli operandi degli operandi è un double, l'altro operando sarà

 convertito in double;

 La promozione automatica degli operandi avviene prima che sia eseguita una
 qualsiasi operazione binaria.

 short a=100,b=130;

 int c=a+b;//230

 Promozione avvenuta con successo. Se invece consideriamo:

 short a=100,b=130;

 short c=a+b; //errore

 Questo perché java nell'espressione promuove i due short in un intero che quindi
 non può essere assegnato a uno short, quello che si deve fare è eseguire un casting

 short a=100,b=130;

 short c=(short)(a+b); //230

 Alto esempio:

 byte b=50;//nessun problema

 b=b+1;//errore perché in un espressione il byte viene promosso a int

 sintassi corretta

 byte b=50;//nessun problema
 30

 b=(byte)(b+1); corretto conferiamo l'intero in byte

 In questo modo il compilatore sarà avvertito di un'eventuale perdita di precisione.
 Bisogna essere però molto prudenti nell'utilizzare il casting in modo corretto. Infatti
 se scrivessimo:

 b = (byte) 128;

 il compilatore non segnalerebbe nessun tipo d'errore. Siccome il cast agisce
 troncando i bit in eccedenza (nel nostro caso, dato che un int utilizza 32 bit, mentre
 un byte solo 8, saranno troncati i primi 24 bit dell'int), la variabile b avrà il valore di
 -128 e non di 128.

 Un altro tipico problema di cui preoccuparsi è la somma di due interi. Se la somma di
 due interi supera il range consentito, è comunque possibile immagazzinare il
 risultato in un intero senza avere errori in compilazione ma il risultato sarà diverso da
 quello previsto.

 31

 Anche la divisione tra due interi rappresenta un punto critico! Infatti il risultato finale,
 per quanto detto sinora, non potrà che essere immagazzinato in un intero, ignorando
 così eventuali cifre decimali. Inoltre, se utilizziamo una variabile long, a meno di cast
 espliciti, essa sarà sempre inizializzata con un intero. Quindi, se scriviamo:

 long a = 2000;

 Dobbiamo tener ben presente che 2000 è un int per default, ma il compilatore non ci
 segnalerà errori perché un int può essere immagazzinato in un long. Per la
 precisione dovremmo scrivere:

 long a = 2000L;

 che esegue con una sintassi più compatta il casting da int a long.

 32

 Codice

 Costanti
 Una costante rappresenta uno spazio di memoria in cui è memorizzato un valore che
 non può essere più alterato dopo che vi è stato assegnato. In Java una costante si
 dichiara utilizzando la keyword final.

 final int A = 82;

 A = 90; // ERROR – cannot assign a value to final variable a

 La dichiarazione di una costante impone delle regole relative a quando e se essa
 debba essere inizializzata, e tali regole presentano delle differenze a seconda che la
 costante sia locale a un metodo o globale di classe. Vedremo tali differenze quando
 studieremo i metodi e le classi.

 33

https://www.jdoodle.com/a/LRf

 Operatori aritmetici
 Nel codice è presente l'operatore aritmetico

 -
 per il calcolo dei biscotti rimasti. Altri operatori aritmetici che agiscono su operandi
 numerici sono:

 Operatore Descrizione
 + Addizione
 - Sottrazione o segno
 * Moltiplicazione
 / Divisione
 % Modulo

 Nelle espressioni la precedenza degli operatori è la stessa dell’algebra:

 Prima sono valutati gli operatori di segno delle singole va riabili o costanti
 numeriche.

 Successivamente sono valutate le operazioni di moltiplicazione, divisione e modulo.

 Per ultime le operazioni di addizione e sottrazione.

 Questi criteri di precedenza possono essere modi ficati con il ricorso ai simboli delle
 parentesi tonde.

 L’unico operatore che può risultare poco familiare è l’operatore modulo. Il risultato
 dell’operazione modulo tra due numeri coincide con il resto della divisione fra essi.
 Per esempio:

 5 % 3 = 2

 10 % 2 = 0

 100 % 50 = 0

 34

 Questi operatori si dicono binari in quanto si applicano a due operandi.

 Esistono anche degli operatori (unari) di pre e post-incremento (e decremento)

 Operatore Descrizione
 -- Decremento

 ++ Incremento
 Operatore unario d’incremento "++"

 Questo Operatore incrementa l’operando di uno, cioè l’espressione:

 x ++

 Sarà equivalente all’espressione:

 x = x + 1

 Tale operatore può essere usato in due modi:

 In posizione post, con operatore dopo operando (ad esempio, x++), restituisce il
 valore prima d'incrementare:

 int y= 5 ;

 int x = y++;

 System.out. println (x);

 System.out. println (y);

 Dà come risultato x = 5, y = 6, poiché l'operazione d'incremento avviene DOPO che
 alla variabile x viene assegnato il valore di y.

 ● Come prefisso quindi prima dell'operando (ad esempio, ++x), restituisce il
 valore dopo l’incremento.

 y=5;

 x = ++y

 restituisce il risultato x = 6, y = 6, poiché prima il valore della variabile y aumenta di
 uno e poi tale valore viene assegnato alla variabile x

 35

 Operatore unario di decremento "--"

 Questo Operatore decrementa il valore della variabile di uno:

 x--
 è equivalente a:

 x = x - 1
 Anche per questo operatore valgono le stesse regole viste per l’operatore
 incremento.

 Per le operazioni di assegnazione oltre uguale (=) usato in precedenza, java mette a
 disposizione gli operatori:

 Operatore Descrizione

 += Somma e assegna x+=y equivale a x=x+y

 –= Sottrae e assegna x-=y equivale a x=x-y

 = Moltiplica e assegna x=y equivale a x=x*y

 /= Divide e assegna x/=y equivale a x=x/y

 %= Calcola il reste assegna x%=y equivale a x=x%y

 Introduzione all'input

 La classe Scanner
 Nel programma precedente le variabili d'input sono state assegnate direttamente nel
 codice. Per realizzare un programma più efficiente si deve gestire l'input dell'utente.
 Partiamo dal concetto fondamentale che è alla base del discorso: lo stream (flusso).
 Per prelevare informazioni da una fonte esterna (la tastiera, un file, una rete etc.), un

 36

 programma deve aprire uno stream su essa e leggerne le informazioni in maniera
 sequenziale. Allo stesso modo un programma può inviare a una destinazione
 esterna aprendo uno stream su essa e scrivendo le informazioni sequenzialmente.

 La classe

 java.util.Scanner
 permette di leggere i dati da un'origine specificata:

 o una stringa

 o un file

 o la console (caso che trattiamo)

 Successivamente, riconosce le informazioni e le elabora in modo appropriato.

 La classe Scanner presenta diversi costruttori che permettono di ottenere un oggetto
 di tipo Scanner a partire da

 oggetti di altri tipi, quali ad esempio:

 37

 1. System.in (se si deve leggere da tastiera).

 2. String, utile in quei casi in cui sia necessario procurarsi degli input da una stringa.

 3. File utile in quei casi in cui l'input proviene da un file di testo.

 Per approfondimenti si rimanda alla documentazione ufficiale del linguaggio Java
 (link).

 Per utilizzare la Classe Scanner per prima cosa importiamo la classe con l'istruzione:

 import java.util.Scanner;

 Posizionata in alto prima della definizione della classe:

 import java.util.Scanner:

 public class ProvaScanner {

 public static void main (String[] args) {

 }

 Il costruttore che utilizziamo per la lettura da tastiera è:

 Scanner in = new Scanner(System.in); //istanzia un oggetto lettore di tipo Scanner
 Usando la libreria System.in abbiamo in ingresso un buffer con le informazioni sotto
 forma di byte da convertire.

 Scanner si occupa di convertire il buffer in ingresso nel tipo di variabile che vogliamo
 (int, String, double….).

 La classe Scanner suddivide lo stream dei caratteri in, spezzoni di stringhe(token)
 separate dai caratteri delimitatori.

 I caratteri delimitatori di default sono:

 o gli spazi,

 o i caratteri di tabulazione

 o i caratteri di newline.

 38

 Alcuni metodi della classe Scanner:

 int nextInt(): legge un numero intero e lo restituisce al chiamante

 double nextDouble(): legge un numero reale e lo restituisce al chiamante;

 import java.util.Scanner;

 public class Main {

 public static void main (String[] args) {

 int i;

 double j;

 Scanner scanner = new Scanner (System. in);

 System. out .print("Primo numero:");

 i = scanner.nextInt();

 System. out .print ("Secondo numero: ");

 j = scanner.nextDouble();

 System. out .print ("La somma di" +i+ "+" +j+ "è: ");

 System. out .println(i + j);

 scanner.close();

 }

 }

 Codice

 String next(), legge un blocco di testo (una sottostringa), ossia una sequenza di
 caratteri contigui senza delimitatori, e lo restituisce al chiamante: questo metodo
 considera come delimitatori di sottostringhe gli spazi, i caratteri di tabulazione e i
 caratteri di newline;

 String nextLine(): legge una linea di testo e la restituisce al chiamante;

 39

https://trinket.io/java/bd95daad84

 Codice
 Soluzione: usare il metodo

 nextLine() in grado di leggere un'intera riga e posizionare il cursore nella linea
 successiva.

 40

https://trinket.io/java/2ec017c7d3

 Se si usa nextLine() bisogna fare attenzione alla sequenza di letture che si
 eseguono.

 import java.util.Scanner;

 public class Main {

 public static void main(String [] args) {

 int i;

 String concorrente;

 Scanner scanner = new Scanner(System.in);

 System.out. print ("Inserisci il numero del concorrente ");

 i = scanner.nextInt();

 System.out. print ("inserisci Cognome e nome ");

 concorrente = scanner.nextLine();

 System.out. print ("\nNumero partecipante:\t

 " + "Concorrente\n" +i);

 System.out. println ("\t" +concorrente);

 scanner. close ();

 }

 }

 Quindi le due istruzioni vengono eseguite entrambe.

 Per risolvere il problema si deve svuotare il buffer questo lo si fa inserendo dopo
 l'istruzione per la lettura di un numero un'istruzione nextLine() che va a eliminare il
 fine riga.

 Codice

 • boolean hasNextInt(): restituisce vero se il prossimo blocco può essere
 interpretato come un numero intero, falso altrimenti.

 41

https://trinket.io/java/c4f0dfb586

 boolean hasNextDouble(): restituisce vero se il prossimo blocco può essere
 interpretato come un numero reale,falso altrimenti.

 • boolean hasNextLine(): restituisce vero se in input è disponibile una ulteriore riga,
 falso altrimenti.

 boolean hasNext(): restituisce vero se in input è disponibile un ulteriore blocco,
 falso altrimenti.

 Questi metodi vengono utilizzati per controllare l'input.

 Esercizi

 1 Scrivere un programmaSommaApprossimata che chiede all’utente d'inserire due numeri con la
 virgola, li somma e poi stampa il risultato come numero intero.

 2 Scrivere il programmaAreaTriangolo assumendo le seguenti dichiarazioni di variabili:

 int base , altezza; double area;

 3 Scrivere l'algoritmo che, ricevuto in input un orario attraverso le sue tre componenti (ore, minuti e
 secondi), ne calcoli il valore totale in secondi.

 4 Scrivere un programma che dato un numero di secondi calcolare da quante ore minuti e secondi è
 composto.

 Questo problema è l'inverso del precedente

 5 File di posti al Cinema

 Scrivi un programma che dato:

 a) Un numero totale di Persone

 b) Il numero di posti presenti in ogni fila

 Restituisca in output:

 - Il numero di file

 - Nel caso l'ultima fila risulti incompleta indicare il numero di persone mancanti per completarla.

 42

 43

 Strutture di controllo del flusso

 Sequenza
 Tutte le istruzioni che compongono il codice sorgente vengono eseguite a run-time in
 ordine sequenziale, dall’alto in basso e da sinistra a destra.

 Le istruzioni di controllo del flusso, consentono di modificare il normale flusso di
 esecuzione del programma.

 Esercizi:

 1 Scrivere un algoritmo che calcoli l'area di un trapezio, note le misure delle basi e
 dell'altezza.

 2 Scrivere l'algoritmo che, dati due numeri interi x e y, calcoli il risultato e il resto
 della divisione intera tra x e y.

 44

 3 Scrivere un algoritmo che, date le età di tre persone, calcoli l’età media.

 4 Scrivere un algoritmo che, dato il prezzo di un prodotto, calcoli il prezzo scontato
 del 20%.

 5 Scrivere un algoritmo che, lette le coordinate di due punti del piano, calcoli la
 distanza tra essi.

 Il flusso di esecuzione può essere alterato attraverso tre categorie d'istruzioni:

 istruzioni di salto condizionale: sono le istruzioni if-else, switch, case. La modifica
 del flusso avviene a seconda che si verifichi o meno una determinata condizione

 istruzioni iterative: for, do, while. La modifica del flusso avviene ripetendo una
 sequenza di istruzioni finché è valida una determinata condizione. Supponendo di
 avere un blocco di 10 istruzioni che vengono ripetute finché si verifica una
 determinata condizione, il flusso eseguirà le istruzioni del blocco dalla 1 alla 10,
 dopodiché anziché eseguire l’istruzione 11, ritornerà ad eseguire l’istruzione 1 del
 blocco; questo finché la condizione sarà valida.

 45

 istruzioni di salto incondizionato: break, continue, return. Queste istruzioni
 determinano il salto del codice “forzato” ad una istruzione differente dalla successiva
 nell’ordine sequenziale

 Inoltre esistono le istruzioni di gestione delle eccezioni: try-catch-finally . Queste
 istruzioni verranno approfondite più avanti nel corso. Per ora possiamo iniziare a dire
 che hanno un comportamento simile alle istruzioni condizionali. Qui però la
 condizione che determina il salto nel flusso di codice è determinata dal verificarsi di
 un errore. Ovvero, se si verifica un errore (in Java eccezione o E xception) il codice
 “salta” l’ordine sequenziale. Il significato di try-catch (prova e cattura) lo potremmo
 riassumere così: “prova (try) ad eseguire questo blocco di istruzioni, se si verificasse
 un’eccezione (errore), cattura (catch) il flusso ed esegui quest’altro blocco di
 istruzioni”

 Struttura di selezione singola if

 La prima e più semplice struttura di controllo è quella definita di selezione singola if,
 con cui si valuta se un’espressione è vera o falsa.

 if (espressione) { istruzioni; }
 dove:

 ● All’interno delle parentesi tonde () è presente un’espressione da valutare.

 46

 ● Tra le parentesi graffe { } vanno poste le istruzioni che vanno eseguite se
 l’espressione risulterà vera.

 ● Se l'espressione risulterà falsa, le istruzioni non saranno eseguite e il flusso
 esecutivo del programma proseguirà alla prima istruzione posta subito dopo la
 parentesi graffa di chiusura.

 Es:

 Prima di uscire di casa si valutano le condizioni del tempo:

 Se piove si prende l'ombrello

 Si esce di casa

 Codice

 Esempio di Selezione

 Un'automobile percorre 20 km con un litro di benzina. Calcolare la spesa necessaria
 a percorrere n km. Se la spesa è maggiore di €100, applicare uno sconto del 5%.

 Dati:

 47

https://www.jdoodle.com/a/LRz

 Siccome al prezzo viene applicato uno sconto se la spesa è superiore ai 100 euro
 spesa>100 verifichiamo la condizione

 import java.util.Scanner;

 class Main {

 48

 public static void main(String[] args) {

 final int consumo = 20 ;

 final double prezzo= 1.8 ;

 Scanner tastiera= new Scanner(System. in);

 System. out .println("Inserisci il numero di Km");

 int numeroKm = tastiera.nextInt();

 double litriConsumati= (double)numeroKm/consumo;

 double spesa= litriConsumati*prezzo;

 if (spesa> 100)

 spesa-=spesa* 5 / 100 ;

 System. out .println("La spesa da sostenere è: " +spesa);

 }

 }

 Codice

 Nella condizione si è fatto uso dell'operatore relazionale:

 >
 che permette di confrontare due espressioni e restituisce true se il primo operando è
 maggiore del secondo, oppure false se non lo è.

 Oltre a questo java dispone di altri operatori per confrontare espressioni essi sono:

 Il risultato delle operazioni basate su operatori relazionali è sempre un valore
 boolean, ovvero true o false.

 49

https://replit.com/@RolandoSucco/Benzina#Main.java

 Struttura di selezione doppia if/else

 La struttura di selezione doppia if-else consente di eseguire delle istruzioni se
 l’espressione è valutata vera oppure altre istruzioni se l’espressione è valutata falsa.
 Tali istruzioni sono mutuamente esclusive.

 if (espressione) { istruzione1; }
 else { istruzione2; }

 Oltre al consueto costrutto if(se) , è presente anche un blocco, definito costrutto
 else(altrimenti), che eseguirà le istruzioni poste al suo interno solamente se
 l’espressione sarà falsa.

 Codice
 50

https://www.jdoodle.com/a/tXk

 La struttura if/else può essere costruita con più livelli di annidamento.

 La logica è :

 se è vera una delle condizioni, allora vengono eseguite le istruzioni corrispondenti e
 il programma salta al di fuori di tutti gli altri if/else;

 se nessuna condizione è vera, allora il programma le salta tutte.

 Algoritmo che permette di verificare se un numero inserito è positivo, negativo o
 nullo.

 Codice

 51

https://www.jdoodle.com/a/tXt

 Lati di un triangolo

 Stabilire se tre segmenti possono costituire i lati di un triangolo

 Dati

 In un triangolo, ciascun lato deve essere minore della somma degli altri due.

 A < B +C e B < A + C e C < A + B
 Algoritmo

 52

 oppure in modo più semplice

 53

 usando gli:

 Operatori booleani

 Per verificare tre condizioni contemporaneamente abbiamo usato l'operatore logico
 AND che opera su due operandi di tipo boolean e restituisce true se i due operandi
 sono veri. Gli altri operatori logici disponibili sono:

 Operatore Descrizione

 && "and logico" Restituisce true se sono vere le espressioni a
 destra e sinistra dell’uguale.

 54

 || "or logico" Restituisce true se una una delle due espressione
 è vera

 !
 "not" nega: l’espressione
 – se è false La cambia in true
 – se è true la cambia in false

 Quando si esegue un'operazione AND, se il primo operando è falso, il risultato è
 falso indipendentemente dal valore del secondo operando.

 In un'operazione OR, se il primo operando è true, il risultato dell'operazione è true
 indipendentemente dal valore del secondo operando. Pertanto, in questi due casi
 non è necessario valutare il secondo operando. Non valutando il secondo operando,
 il tempo di esecuzione è minore e il codice risulta più efficiente. Oltre a questi
 operatori detti di cortocircuito javascript possiede degli operatori analoghi che
 operano sempre su ogni bit.

 Operatori bitwise ("bit a bit")

 Gli operatori sui bit od operatori bitwise trattano i valori numerici come sequenze di
 bit applicando le relative operazioni. Gli operatori previsti in Java Sono:

 Operatore Descrizione

 & And per la congiunzione logica bit a bit

 | OR per la disgiunzione logica bit a bit

 ̂ Xor per l’Or esclusivo bit a bit (

 ~ per il complemento a uno dell’operatore, nega cioè bit a bit il
 dato

 >> Spostamento a destra con segno (shift) del primo operando di
 tanti bit quanti indicati dal secondo e riempi gli spazi vuoti con
 il bit di segno

 >>> Spostamento a destra senza segno (shift) del primo operando
 di tanti bit quanti indicati dal secondo e riempie gli spazi vuoti
 con zero

 << per lo scorrimento a sinistra(shift)
 Tavole della verità

 55

 Esercizi

 1. Scrivere un programma che, letto in input un valore numerico, dica se è
 positivo o negativo.

 2. Scrivere un programma che, dato un numero intero in input, visualizza il suo
 doppio se è pari, il triplo se è dispari.

 3. Scrivere un programma che, dati due numeri, calcoli la somma se sono
 entrambi positivi, il prodotto altrimenti.

 4. Scrivere un programma che, dato il prezzo di un prodotto, applichi uno sconto
 del 12% se il prezzo è inferiore a € 30,00, del 25% altrimenti.

 5. Scrivere un programma che, dati base e altezza di un triangolo, calcoli l'area
 se sono entrambi positivi, oppure stampi il messaggio "Valori di input errati".

 6. Scrivere un programma che, presi in input gli estremi a e b di un intervallo e
 un valore x, visualizzi il messaggio "Il valore è interno all'intervallo" se a ≤ x ≤
 b, altrimenti "Il valore è esterno all'intervallo". Scrivere un algoritmo che, letti
 in input due numeri interi, verifichi se il primo è multiplo del secondo.

 7. Scrivere un programma che, dato un numero intero in input, visualizza il suo
 doppio se è pari, il triplo se è dispari.

 8. Scrivere un programma che, dati due numeri, calcoli la somma se sono
 entrambi positivi, altrimenti calcoli la differenza tra il maggiore e il minore.

 9. Scrivere un programma che, dati i lati di un triangolo, calcoli il perimetro se
 questi tre valori possono essere i lati di un triangolo, altrimenti stampi il
 messaggio "Valori d'input errati".

 56

 10. Scrivere un programma che, preso in input un voto, dica se è corretto
 (compreso tra 1 e 10).

 11. Scrivere un programma che, dato il consumo di acqua di un utente, espresso in
 m3, calcoli l'importo della bolletta, sapendo che ogni bolletta comprende una
 quota fissa di 20 euro e una quota variabile di 2,50 euro/m3 per i primi 100
 metri cubi d'acqua, di euro 4,00/m3 per i metri cubi in eccesso.

 12. Scrivere un programma che determini il prezzo d'ingresso al cinema
 considerando che clienti con un’età compresa tra 18 e 65 anni pagano il
 prezzo pieno, mentre per età diverse da queste il prezzo è la metà del prezzo
 pieno. Si effettuino i dovuti controlli sui valori immessi in input.

 13. Scrivere un programma per controllare la correttezza di una data ricevuta in
 ingresso attraverso tre diversi input: giorno, mese e anno. Tutti gli input
 devono essere numerici. Si effettuino i dovuti controlli sui valori immessi in
 input.

 14. Progettare un programma che dati in input due orari della stessa giornata
 visualizzi la differenza in ore, minuti e secondi.
 Esempio:
 Ora 1: 10
 Minuti 1: 14
 Secondi 1: 18
 Ora 2: 5
 Minuti 2: 9
 Secondi 2: 2
 Differenza: 5:5:16

 15. Realizzare un programma che fornite due date in input, visualizzi il numero di
 giorni che intercorrono tra loro. Ad esempio:

 Data antecedente: 10/08/2018 Data successiva: 08/01/2022

 Giorni che intercorrono fra le due date: 1243

 Per ogni data prevedere l'inserimento distinto di giorno, mese, anno. Non è
 previsto che la prima data inserita debba necessariamente essere
 l'antecedente.
 Non si considerino gli anni bisestili, i mesi si suppongono tutti di 30 giorni e gli
 anni compresi tra il 1970 e l’anno corrente.
 Si controlli la correttezza delle date inserite.

 16. Scrivere un programma che determina se un anno inserito da tastiera è
 bisestile.

 17. Scrivere un programma che, letto in input un valore numerico, dica se è
 positivo, negativo o nullo.

 57

 18. Scrivere un programma che, presi in input 3 numeri, visualizzi il valore
 maggiore.

 19. Scrivere un programma per visualizzare in ordine crescente tre valori numerici
 ricevuti in input.

 20. Scrivere un programma che legga da tastiera i valori delle lunghezze dei tre
 lati di un triangolo e determini se il triangolo è equilatero, isoscele, rettangolo o
 scaleno.

 21. Si realizzi un programma che, dato il prezzo di un prodotto e la quantità
 acquistata, calcoli il prezzo totale, tenendo conto che il venditore applica uno
 sconto del 10% se si acquistano più di 5 pezzi, del 15% se si acquistano più di
 10 pezzi o del 20% se si acquistano più di 20 pezzi.

 22. Progettare un programma che chieda in input tre valori interi compresi
 nell’intervallo [10-1000]. L’algoritmo deve verificare se almeno due dei tre
 numeri condividono la cifra meno significativa, e in questo caso dovrà
 visualizzare la cifra condivisa. Nel caso non ci sia alcun numero che condivide
 la cifra meno significativa si dovrà visualizzare un messaggio appropriato.
 Esempi:
 Input: 41, 22, 71 → Output: 1
 Input: 23, 32, 42 → Output: 2
 Input: 57, 37, 17 → Output: 7
 Input: 14, 53, 98 → Output: “Nessun valore condivide l’ultima cifra”
 Input: 9, 99, 999 → Output: “Una delle cifre non si trova nell’intervallo
 [10-1000]”

 23. Lo spazio espresso in metri di frenata di un'automobile è stimato mediante la
 seguente formula, supponendo che il tempo di reazione del guidatore sia pari
 ad 1 secondo: spazio = velocita2 / (250 * COEFFICIENTE)
 dove velocita è la velocità in km/h, e COEFFICIENTE è un coefficiente relativo
 alle condizioni stradali, come indicato dalla seguente tabella:

 Condizioni stradali COEFFICIENTE

 Asfalto ruvido 0,6

 Asfalto liscio 0,5

 Asfalto bagnato 0,4

 Asfalto ghiacciato 0,1

 58

 Progettare un programmache calcola lo spazio di frenata a partire dalla
 velocità data in input e dal coefficiente sulle condizioni stradali. Usare lo
 switch-case per risolvere l’algoritmo.

 24. Gli abbonamenti della GTT di Torino possono riguardare zone diverse (urbano
 - 1, suburbano - 2, urbano+suburbano - 3) e possono essere settimanali (S),
 mensili (M) o annuali (A). I costi sono quelli indicati nella seguente tabella:

 Zona\Durata S M A

 1 12,00 € 38,00 € 310,00 €

 2 9,80 € 35,50 € 319,50 €

 3 15,70 € 56,50 € 508,50€

 Gli abbonamenti per gli studenti hanno una riduzione del 50%.
 Progettare un programma che calcola il costo dell’abbonamento a partire dal tipo,
 dalla durata e se ad acquistarlo è uno studente o meno.

 25. Progettare un programma che accetti tre valori numerici interi e li visualizzi in
 ordine crescente.

 26. Progettare un programma che richieda l’inserimento di una temperatura in
 gradi Celsius e visualizzi un messaggio come indicato nella seguente tabella:

 Temperatura (t) Messaggio

 t >= 30 “Molto caldo”

 20 <= t < 30 “Caldo”

 10 <= t < 20 “Ideale”

 0 <= t < 10 “Freddo”

 t < 0 “Molto freddo”

 27. Progettare un programma che calcoli le radici nel campo reale di un’equazione
 di secondo grado, dati in input i coefficienti a e b e il termine noto c.

 28. Progettare un programma che visualizzi il maggiore fra tre numeri dati in input.
 Dati

 Input Output Lavoro
 59

 a max

 b

 c
 Relazione tra ingresso e uscita

 se a>b trovare il max tra a e c

 altrimenti trovare il max tra b e c

 se a>b
 se a>c

 max = a

 altrimenti il max è C

 altrimenti

 se b>c

 allora il max è b

 altrimenti il max è c

 29.

 Struttura di selezione multipla switch/case

 La struttura di selezione multipla switch/case consente di eseguire le istruzioni di un
 blocco di codice, identificato da una particolare etichetta, se il valore costante che
 questa rappresenta è uguale al valore dell’espressione da valutare, che può essere
 di tipo byte, short, char, int, String ed enumerativo.

 switch (expression)

 {

 60

 case value1: statements;

 break ;

 case value2:

 statements;

 break ;

 ... [default]: statements;

 }

 61

 La keyword switch è seguita dalle parentesi tonde () che racchiudono
 l’espressione da valutare.

 Tra le parentesi graffe { }, si ha un insieme di etichette (keyword case). Il valore
 dell'etichette deve essere una costante. Chiude il blocco switch una clausola non
 obbligatoria (keyword default), che esegue delle istruzioni se tutti i blocchi case non
 hanno un valore corrispondente al valore dell’espressione switch.

 62

 L’istruzione break interrompe il flusso esecutivo del codice facendolo uscire dalla
 struttura switch, altrimenti viene valutato anche il caso successivo.

 class ProvaSwitch {

 public static void main (String[] args) {

 Scanner in = new Scanner(System. in);

 System. out .println("inserisci il giorno da 1 a 7");

 int giornoDellaSettimana = in .nextInt();

 String nomeGiorno;

 switch (giornoDellaSettimana) {

 case 1 :

 nomeGiorno = "Lunedì";

 break ;

 case 2 :

 nomeGiorno = "Martedì" ;

 break ;

 case 3 :

 nomeGiorno = "Mercoledì" ;

 break ;

 case 4 :

 nomeGiorno = "Giovedì";

 break ;

 case 5 :

 nomeGiorno = "Venerdì" ;

 break ;

 case 6 :

 nomeGiorno = "Sabato" ;

 break ;

 case 7 :

 nomeGiorno = "Domenica" ;

 break ;

 default :

 nomeGiorno = "non valido" ;

 }

 System. out .println("il giorno della settimana è: " +

 nomeGiorno);

 }

 }

 63

 Codice

 Multi-case

 Se si omette il break, vengono eseguiti tutti i blocchi a partire da quello per cui
 l'etichetta è uguale all'espressione.

 int valore = 0 ;

 switch (valore) {

 case -1 :

 System.out. println ("-1 negativo");

 break ;

 case 0 : // valore è 0 quindi il criterio è verificato; questo

 blocco verrà eseguito

 System.out. println ("valore verificato" +valore);

 // NOTA: il break non è stato inserito

 case 1 : // manca il comando break in 'case 0:' quindi anche

 questo blocco sarà eseguito

 System.out. println ("case 1 eseguito per mancanza del break");

 break ; //incontra il break e non proseguirà in 'case 2:'

 case 2 :

 System.out. println (2);

 break ;

 default :

 System.out. println ('default');

 }

 Si sfrutta questa proprietà del break per fare dei controlli multipli. Realizzare un
 programma che visualizzi il numero di giorni in base al mese e all’anno inseriti:

 Siccome più mesi hanno trentuno giorni si raggruppano in una sequenza di case
 vuote, l'ultima case fissa il numero di giorni e è chiusa con il break. La stessa cosa
 per i mesi di trenta giorni.

 class SwitchMultiCase {

 public static void main (String[] args) {

 Scanner in = new Scanner(System. in);

 64

http://jdoodle.com/ia/kNV

 System. out .println("inserisci mese");

 int mese = in .nextInt();

 System. out .println("inserisci anno");

 int mese = in .nextInt();

 int numeroGiorni = 0 ;

 switch (mese) {

 case 1 :

 case 3 :

 case 5 :

 case 7 :

 case 8 :

 case 10 :

 case 12 :

 numeroGiorni = 31 ;

 break ;

 case 4 :

 case 6 :

 case 9 :

 case 11 :

 numeroGiorni = 30 ;

 break ;

 case 2 :

 if (((anno % 4 == 0) && !(anno % 100 == 0)) || (anno % 400

 == 0))

 numeroGiorni = 29 ;

 else

 numeroGiorni = 28 ;

 break ;

 default :

 numeroGiorni = -1 ;

 break ;

 }

 System. out .println("Numero di giorni = " + numeroGiorni);

 }

 }

 Nel case due si verifica se l’anno è bisestile.

 Esercizi:

 65

 1. Scrivere un programma che, preso in input un valore compreso tra 1 e 12,
 visualizzi il nome del mese corrispondente.

 2. Scrivere un programma per convertire un numero intero N compreso tra 1 e
 365, fornito in input, nel giorno e mese corrispondente. Si consideri un anno
 non bisestile.

 3. Il biglietto d'ingresso a un teatro ha le seguenti tariffe. Per i bambini di età
 inferiore a 6 anni l'ingresso è gratuito, per gli studenti 8 euro, per i pensionati
 10 euro, per tutti gli altri 15 euro. Creare un programma in cui l’utente inserisce
 un numero tra 1 e 4 e viene comunicato il prezzo relativo all'opzione scelta. Se
 il numero non è un'opzione valida viene mostrato un messaggio di errore.

 4. Progettare un programma che prenda in input un numero intero, sia negativo,
 sia positivo, e visualizzi il numero come parola se è compreso nell’intervallo
 [-9, +9], mentre visualizzi la scritta “Other” diversamente. Si provi ad usare il
 costrutto switch-case.

 Operatore ternario ?:

 Oltre ai costrutti if ... else e switch è possibile modificare il flusso di un programma (a
 seconda che si verifichi una condizione) tramite l'operatore ternario. La cui sintassi è:

 condizione ? istruzione1; : istruzione2;
 Che si traduce come: se la condizione è vera esegui l'istruzione 1, in caso contrario
 esegui l'istruzione 2.

 Questo operatore è comodo se si devono affrontare condizioni semplici del tipo if...
 else mentre è meno adatto a controlli complessi, anche perché si scrive su una linea
 singola e non si può andare a capo.

 L’operatore ternario può essere usato per assegnare un valore a una variabile
 usando la forma:

 <variabile> = <condizione>?<valore1>:<valore2>

 Alla variabile viene assegnato direttamente il risultato del controllo ternario.

 int numero =in.nextInt();

 String risultato =numero%2==0 ? "numero pari" : "numero

 66

 dispari" ;

 System.out.println(risultato);

 è possibile combinare tra loro due o più operatori ternari per gestire situazioni più
 complesse.

 Loop

 Capita che per risolvere un problema una o più istruzioni devono essere ripetute più
 volte. Se si vogliono visualizzare i numeri da 1 a 10 (ma potrebbe essere da 1 a
 1000) invece di scrivere le dieci istruzioni:

 1. System.out.println (1);
 2. …
 3. …..
 10. System.out.println (10);

 Si può usare un LOOP cambiando semplicemente il numero con una variabile che
 aumenta di uno.

 numero=1

 ripeti per 10 volte

 scrivi(numero)

 numero=numero+1

 Per fare questo tutti i linguaggi possiedono dei costrutti di tipo loop. Java consente
 tre strutture iterative:

 Struttura di iterazione while

 Questo costrutto esegue lo stesso blocco d'istruzioni finché una condizione è vera.
 La sua sintassi è la seguente:

 while (condizione) {
 67

 istruzioni;
 }

 Abbiamo:

 ● la keyword while, contenente la condizione da valutare
 ● un blocco di codice scritto tra le parentesi graffe { }.

 l'esempio di prima diventa:

 public class While {

 public static void main (String[] args) {

 int numero = 1 ;

 while (numero < 11) {

 system. out .println(numero);

 numero++;

 }

 }

 }

 Il ciclo while si può interpretare in questo modo:

 Finché la variabile numero è minore al valore di 11, stampare il numero.

 68

 L’istruzione numero++ è fondamentale poiché permette di modificare il valore di
 numero. Se non ci fosse questa istruzione il ciclo while sarebbe infinito, perché la
 condizione sarebbe sempre vera, dato che la variabile numero è sempre minore di
 11.

 Lo schema principale è:

 Nei cicli spesso si fa uso di due variabili particolari:

 1. contatore: utilizzata per contare quante volte sono eseguite determinate
 istruzioni oppure l'intero ciclo. Viene inizializzata (spesso a zero) e
 incrementata ogni volta di uno e è usata anche come condizione per uscire dal
 ciclo.

 2. accumulatore: cioè una variabile nella quale ogni nuovo valore non
 sostituisce il valore corrente ma si accumula a esso. Si pensi al display della
 cassa di un supermercato in cui ogni volta che si passa un prodotto il prezzo si
 somma al precedente.

 Esempio di Codice

 Struttura di iterazione do/while

 La struttura do/while consente, come la struttura while, di ripetere un blocco
 d'istruzioni finché una condizione è vera. Nel do while però le istruzioni vengono
 eseguite almeno una volta, in quando la condizione viene testata in coda. Sintassi
 do/while:

 69

https://www.jdoodle.com/a/LRV

 do {
 istruzione;
 } while (condizione);

 dove:

 ● la keyword do rappresenta l'inizio del ciclo
 ● Le istruzioni poste tra le parentesi graffe { }
 ● la keyword while seguita con la condizione da valutare.

 70

 public class DoWhile {

 public static void main (String[] args) {

 int a = 8 ;

 System. out .print("a = ");

 do {

 71

 System. out .print(a-- + " ");

 } while (a >= 0); // finché a >= 0

 }

 }

 Output.

 a = 8 7 6 5 4 3 2 1 0

 Struttura di iterazione for

 La struttura for consente di ripetere un blocco d'istruzioni finché una condizione è
 vera. A differenza di while e do/while, for consente di gestire all'interno del suo
 costrutto delle espressioni aggiuntive con cui:

 ● Si inizializzano
 ● Si testano
 ● Si modificano delle variabili di controllo.

 Sintassi for:

 for (expression1; expression2; expression3) {

 istruzione; }

 La keyword for è seguita dalle parentesi tonde () che racchiudono tre espressioni:

 1. expression1: inizializza le variabili,
 2. expression2: controlla se la condizione è vera
 3. expression3: che modifica le variabili di expression2.

 72

 Il costrutto termina con le parentesi graffe { } del blocco d'istruzioni che sarà eseguito
 ciclicamente finché la condizione è vera.

 public class For {

 public static void main (String[] args) {

 System. out .print("a = ");

 for (int a = 8 ; a >= 0 ; a--) // finché a >= 0 esegue il ciclo

 {

 System. out .print(a-- + " ");

 }

 }

 }

 Output a = 8 7 6 5 4 3 2 1 0

 Il ciclo for è semplice da usare quando si conosce il numero di volte che il ciclo deve
 essere ripetuto, infatti fa quasi sempre uso (non è un obbligo) di una variabile
 contatore:

 ● inizializzata nella prima espressione
 ● controllata nella seconda
 ● modificata nella terza

 Istruzioni break, continue

 Le strutture iterative possono essere alterate durante il loro flusso esecutivo
 mediante le istruzioni break e continue:

 L’istruzione break interrompe l’iterazione:

 Nel programma che stampa i primi dieci numeri inseriamo un controllo sul numero da
 stampare se questo numero è 5 inseriamo l'istruzione break:

 73

 Output :

 a = 1 2 3 4

 a = 1 2 3 4

 L’istruzione break interrompe l’iterazione sia del ciclo for sia del ciclo while; infatti
 quando la variabile a è uguale a 5 il programma esce dall’iterazione, pertanto
 saranno stampati solo i valori fino a 4.

 L’istruzione continue, invece, salta le rimanenti istruzioni del corpo della struttura e
 procede con la successiva iterazione.

 Nel programma precedente sostituiamo break con continue.

 74

 Output :

 a = 1 2 3 4 6 7 8 9 10

 a = 1 2 3 4 6 7 8 9 10

 Esercizi

 1. Scrivere un algoritmo che visualizza i numeri naturali dispari da 3 a 21.
 2. Scrivere un algoritmo che visualizza in ordine decrescente i numeri pari positivi

 inferiori a 50.
 3. Scrivere un algoritmo che visualizza tutti i numeri naturali inferiori al valore

 assoluto di un numero scelto dall'utente.
 4. Scrivere un algoritmo che visualizza in ordine crescente tutti i numeri naturali

 compresi tra due numeri scelti dall'utente (estremi inclusi).
 5. Scrivere un algoritmo che, presi in input 15 numeri interi, dica quanti valori pari

 sono stati inseriti.
 6. Scrivere un algoritmo che, presi in input 20 numeri interi, dica quanti valori

 negativi sono stati inseriti.

 75

 7. Scrivere un algoritmo che, presi in input due numeri interi N e X (con N>0),
 visualizzi gli N numeri interi successivi a X.

 8. Scrivere un algoritmo che, presi in input N valori interi (N > 0), calcoli la
 somma dei numeri positivi e la somma dei valori assoluti dei numeri negativi.

 9. Calcolare il prodotto di due numeri naturali, mediante somme successive.
 10. Calcolare quoziente e resto intero della divisione tra due numeri naturali,

 mediante differenze successive.
 11. Scrivere un algoritmo che, dato un numero compreso nell’intervallo [1, 10],

 visualizzi i suoi primi 10 multipli.
 12. Si sviluppi un programma che, come nel caso di una macchina distributrice

 di caffè, riceve in ingresso un numero intero positivo N (corrispondente a un
 importo da pagare in centesimi) e, successivamente, una sequenza di numeri
 interi corrispondenti alle monete inserite, che possono essere da 1, 5, 10, 20 e
 50 centesimi. Il programma deve ripetere l’acquisizione di ciascun numero se
 non corrisponde a una moneta tra quelle indicate. Appena l’importo richiesto N
 viene raggiunto o superato, il programma interrompe l’acquisizione della
 sequenza e restituisce una serie di numeri interi corrispondenti al resto in
 monete da 1 e 5 centesimi.Ad esempio, se il programma riceve N=101 e la
 sequenza 50, 20, 20, 20, produce in uscita 5, 1, 1, 1, 1

 13. Realizzare un programma in grado di calcolare l’altezza media degli
 studenti di una classe, dando in input il numero di allievi della classe.

 14. Realizzare un programma in grado di calcolare l’altezza media degli
 studenti di una classe, senza fornire inizialmente il numero di allievi della
 classe.

 15. Progettare un algoritmo che legga una sequenza di valori numerici fino alla
 lettura di un valore 0 e scriva quanti valori sono stati letti e la loro somma.

 16. Progettare un algoritmo che, dato un valore numerico numero, legga n
 valori e conti quanti di essi sono maggiori di numero scrivendo il risultato.

 17. Progettare un algoritmo che, dato un valore numerico numero, legga n
 valori e conti quanti sono i valori maggiori di numero, quanti i valori uguali a
 numero e quanti quelli minori.

 18. Progettare un algoritmo che, dato un valore numerico numero, legga n
 numeri e conti quanti di questi sono multipli di numero scrivendo il risultato.

 19. Progettare un algoritmo che legga una sequenza di valori numerici fino a
 che la loro somma è minore di 100 e scriva la somma ottenuta e quanti sono i
 valori letti.

 20. Progettare un algoritmo che, dati due valori numerici numMinore e
 numMaggiore, legga n valori e conti quanti di essi sono compresi tra
 numMinore e numMaggiore scrivendo il risultato.

 21. Progettare un algoritmo che permetta di inserire un numero compreso
 nell’intervallo [1-1000] e, partendo da questo, sommi i primi cinque numeri che

 76

 sono divisibili sia per 3, sia per 5, visualizzando sia i numeri che rispettano il
 criterio, sia il risultato finale.

 22. Progettare un algoritmo che prenda in input un valore numerico maggiore o
 uguale a 10 e restituisca la somma di tutte le cifre che lo compongono.

 23. Progettare un algoritmo che indichi a video se un numero è o meno
 palindromo.
 Un numero palindromo è un numero che invertito restituisce lo stesso numero
 originale, ad esempio:

 a. -1221 è palindromo;
 b. 707 è palindromo;
 c. 11212 non è palindromo;
 d. 121 è palindromo;
 e. -12321 è palindromo;
 f. 1001 è palindromo;
 g. -744117 non è palindromo.

 Per verificare se un numero è palindromo potrebbe essere utile determinare
 l’inverso del numero dato, da confrontare con il numero originale.
 Per trovare l’inverso di un numero ricordati che puoi estrarre una cifra dopo
 l’altra con il % e spostarla di posizione moltiplicandola per 10.
 Progettare un algoritmo che, dato in input un numero intero positivo, visualizzi
 la somma della cifra più significativa e della cifra meno significativa del
 numero. Ad esempio:
 Input: 252 → Output: 4
 Input: 257 → Output: 9
 Input: 0 → Output: 0
 Input: 5 → Output: 10
 Input: -10 → Output: ERRORE
 Progettare un algoritmo che dato in input un numero intero positivo visualizzi la
 somma delle sue cifre pari.

 24. Progettare un algoritmo che prenda in input due numeri nell’intervallo
 [10-99], e se hanno una cifra in comune visualizzi la stringa “I due numeri
 condividono cifre”, altrimenti visualizzi “I due numeri non condividono cifre”.

 25. Progettare un algoritmo che, dato in input un numero intero positivo
 espresso in base 10, fornisca la sua conversione in base 2 (non si utilizzino gli
 array). Per visualizzare correttamente il numero binario si utilizzi la tecnica per
 determinare l’inverso di un numero consigliata nell’esercizio per individuare se
 il numero è palindromo.

 26. Progettare un algoritmo che prenda in input un numero intero maggiore di 1
 e visualizzi tutti i suoi fattori primi. Ad esempio, i fattori primi di 6 sono 1, 2, 3,
 6.

 27. Progettare un algoritmo che preso in input un numero intero positivo indichi
 se è o meno un numero perfetto. Un numero è perfetto se è uguale alla

 77

 somma dei suoi divisori propri, ad esempio, 6 è un numero perfetto in quanto è
 somma dei suoi divisori propri: 1 + 2 + 3 = 6.

 28. Progettare un algoritmo che, leggendo n valori numerici, verifichi se essi
 sono forniti in ordine crescente o meno.

 29. Progettare un algoritmo che, dato un valore numerico k, legga n coppie di
 valori e conti quante di queste coppie hanno come prodotto il valore k.

 30. Dati n valori numerici in ordine crescente, progettare un algoritmo che
 scriva se i numeri forniti a partire dal secondo differiscono ognuno dal
 precedente di un valore costante. In caso affermativo l’algoritmo deve scrivere
 il valore della differenza, in caso negativo l’algoritmo deve scrivere il valore
 massimo delle differenze.

 31. Una leggenda orientale narra di un matematico che, in cambio di alcuni
 servigi resi al re, chiese la seguente ricompensa: «un chicco di riso per la
 prima casella di una scacchiera, due chicchi di riso per la seconda casella di
 una scacchiera, quattro chicchi di riso per la terza casella... e così via per tutte
 le 64 caselle della scacchiera». Progettare un algoritmo che, a partire dal
 numero N di caselle che si intendono riempire, calcoli il numero complessivo di
 chicchi di riso che spettano come ricompensa.

 32. Un’onda marina anomala dimezza la propria altezza ogni chilometro
 percorso e scompare raggiungendo un’altezza pari a zero quando l’altezza
 scende al di sotto del metro.

 33. Progettare un algoritmo che calcoli, a partire dai valori dell’altezza iniziale h
 e dal numero di chilometri percorsi k, l’altezza raggiunta dall’onda.

 34. Modificare l’algoritmo precedente in modo che, a partire dalla sola altezza
 iniziale dell’onda h, determini il numero di chilometri necessario prima che
 essa scompaia.

 35. Nella disintegrazione atomica dei materiali radioattivi la massa perduta nel
 periodo di un anno è data dal prodotto della massa residua per una costante di
 decadimento caratteristica del tipo di materiale.

 36. Progettare un algoritmo che calcoli, a partire dai valori della massa iniziale
 espressa in grammi, della costante di decadimento e del numero di anni
 trascorsi, la massa residua di materiale.

 37. Modificare l’algoritmo precedente in modo che, a partire dalla massa
 iniziale espressa in grammi e dalla costante di decadimento, determini il
 numero di anni necessario prima che la massa residua di materiale sia
 inferiore a 1 g.

 38. La popolazione di un particolare batterio raddoppia ogni ora. Progettare un
 algoritmo che, a partire dal numero di ore trascorse e dal valore espresso in
 «unità di carica batterica» della consistenza iniziale della popolazione
 batterica, ne calcoli la consistenza finale raggiunta.

 39. La massa di un particolare materiale radioattivo dimezza ogni millennio.
 Progettare un algoritmo che, a partire dal numero di millenni trascorsi e dal

 78

 valore espresso in grammi della massa iniziale del materiale radioattivo, calcoli
 la massa finale residua.

 40. Dato un valore numerico costante k (non necessariamente intero),
 l’N-esimo numero di Bernoulli è dato dalla somma dei primi N numeri interi
 elevati alla potenza k; per esempio per N = 5:
 1k + 2k + 3k + 4k + 5k
 Progettare un algoritmo che determini, a partire dai valori della costante k e del
 numero N, il numero di Bernoulli relativo.

 41. La media geometrica di N numeri x1 , x2 , ..., xN è data dalla seguente
 formula:
 (x1 * x2 * ... * xN)1/N
 Progettare un algoritmo che calcoli la media geometrica di N numeri positivi
 inseriti dall’utente.

 42. Il filosofo Zenone di Elea motivava il fatto che il moto è solo un’illusione con
 la seguente argomentazione: «dovendo percorrere una certa distanza si dovrà
 coprire con un primo spostamento metà della distanza, con un secondo
 spostamento metà della distanza rimanente, con un terzo spostamento metà
 della distanza ancora rimanente e così via senza arrivare mai a destinazione».
 Progettare un algoritmo che, data la distanza da percorrere e il numero di
 spostamenti effettuati, calcoli la distanza effettivamente coperta.
 In una acciaieria il semilavorato metallico grezzo viene prodotto con uno
 spessore di alcuni centimetri e viene successivamente lavorato passando per
 una serie di N laminatoi, ciascuno dei quali diminuisce lo spessore del 10%.

 43. Progettare un algoritmo per determinare lo spessore del laminato a partire
 dallo spessore del semilavorato grezzo e dal numero di laminatoi presenti nel
 processo di lavorazione.

 44. Modificare l’algoritmo precedente in modo che determini il numero di
 laminatoi necessari nel processo di lavorazione per ottenere un laminato di
 spessore definito a partire dallo spessore del semilavorato.

 45. Un foglio di carta in formato A0 ha dimensioni 118,8 × 84 cm; a partire da
 questo un foglio in formato A1 ha il lato lungo uguale al lato corto del formato
 A0 (84 cm) e il lato corto uguale alla metà del lato lungo del formato A0 (118,8
 cm : 2 = 59,4 cm). Per calcolare le dimensioni dei formati A2, A3, A4, ... si
 procede sempre nello stesso modo: il lato lungo è uguale al lato corto del
 foglio immediatamente più grande, mentre il lato corto è esattamente la metà
 del lato lungo del foglio immediatamente più grande e così via. Progettare
 l’algoritmo che calcola le dimensioni di un foglio in formato AN, dove N viene
 fornito come dato di ingresso.

 46. Una popolazione di insetti ha un accrescimento mensile dato dalla
 seguente formula:
 k * P * (1 – P/M)

 79

 dove P è la popolazione di insetti, k è la costante di accrescimento, M è la
 massima popolazione sostenibile dall’ambiente locale.

 47. Realizzare un algoritmo che abbia come dati il numero N dei mesi, la
 costante k, il massimo M, la popolazione iniziale Pi e che calcoli come risultato
 la popolazione di insetti trascorsi N mesi dal momento iniziale.

 48. L’accrescimento della popolazione umana è guidato da una semplice legge
 matematica: l’incremento della popolazione tra un anno e il successivo è dato
 dal prodotto di una costante (il tasso di accrescimento) per la dimensione della
 popolazione. Realizzare l’algoritmo che consente di simulare anno per anno i
 valori della dimensione della popolazione a partire da:
 l’anno iniziale della simulazione;
 il valore della dimensione iniziale della popolazione;
 il valore del tasso di accrescimento;
 l’anno finale della simulazione.

 49. Una pianta cresce ogni mese della metà di quanto è cresciuta il mese
 precedente (il primo mese cresce della metà dell’altezza iniziale). Progettare
 l’algoritmo che calcola l’altezza finale della pianta a partire dall’altezza iniziale
 e dal numero di mesi.

 50. Nel 1593 il matematico dilettante francese François Viète approssimò il
 valore numerico di π con il seguente metodo, che fornisce risultati
 progressivamente più precisi al crescere del numero n di iterazioni:

 51. Realizzare un algoritmo che, dato il numero n di iterazioni da calcolare,
 produca la stima pn del valore di π nell’ipotesi di un esecutore che sia in grado
 di calcolare direttamente la radice quadrata di un numero.

 52. La prima stima precisa del valore di π è stata fornita dal matematico cinese
 Tsu Chung-Chi nel V secolo d.C. utilizzando il seguente metodo iterativo:

 dove, a partire dal valore iniziale x0 , viene calcolato ogni volta il valore
 successivo xn + 1 a partire dal valore precedente xn; al termine del
 procedimento – dopo N iterazioni del calcolo – la stima del valore di π è data
 dalla seguente formula:
 s = 2 * xN

 53. Progettare un algoritmo che, a partire dal numero di iterazioni N, calcoli una
 stima s del valore di π nell’ipotesi di un esecutore che sia in grado di calcolare
 direttamente la radice quadrata di un numero.

 80

 54. La società di assicurazioni “Io speriamo che me la cavo” ha stipulato N
 contratti di assicurazione su motociclette secondo la seguente formula:
 se la moto ha cilindrata maggiore di 350, il costo dell'assicurazione è uguale a
 una quota fissa Q più € 30 per ogni mille euro del prezzo della moto;
 altrimenti il costo dell’assicurazione è uguale alla quota fissa Q più € 20 per
 ogni mille euro del prezzo della moto.

 55. Progettare un algoritmo in grado di fornire in output quanto ha incassato
 l’assicurazione.

 56. Lo stipendio di un dipendente dell’azienda “Ma quanto mi costi” è formato
 da 3 parti: salario accessorio (A), stipendio base (B), compensi aggiuntivi (C).
 Sulla parte A si applica la trattenuta del 19%, sulla parte B il 16%, sulla parte C
 il 2%. Sul totale A+B+C viene trattenuto un ulteriore 0.5%.
 Progettare un algoritmo che per ognuno dei dipendenti visualizzi il numero di
 matricola, il totale delle trattenute e lo stipendio finale netto. Si visualizzi infine
 il totale degli stipendi lordi e il totale delle trattenute di tutti i dipendenti.

 57. Progettare un algoritmo che preveda l’inserimento delle altezze in
 centimetri di un gruppo di persone, e visualizzi l’altezza minima e il numero di
 persone che hanno un’altezza pari a quella minima. Si effettuino tutti i controlli
 necessari sui valori inseriti in input.
 Il programma è utilizzato per determinare l’altezza minima e massima
 nell’ambito di un’applicazione statistica sulla crescita degli studenti italiani in
 età scolare, indicando anche il numero di persone che hanno la stessa altezza
 minima o massima.
 Il programma prende in input il numero delle persone da analizzare e le
 altezze di ogni singolo individuo. Fornisce in output l’altezza minima e il
 numero di persone che hanno un’altezza pari al minimo, e l'altezza massima
 con il numero di persone che hanno l’altezza pari al massimo.
 Il programma prevede che venga richiesto in input il numero di persone. Le
 variabili per contenere l’altezza minima e massima devono essere inizializzate
 a dei valori che permettono la loro immediata sostituzione. Inoltre sarà
 necessario inizializzare due variabili che contano il numero di persone con
 l'altezza minima e il numero di persone con l'altezza massima.
 Successivamente viene impostato un ciclo di controllo delle altezze con
 l'altezza minima. Se l’altezza inserita in input risulta essere inferiore al minimo
 la variabile del minimo dovrà essere sostituita con il nuovo minimo individuato,
 e il contatore delle persone che hanno quella altezza minima dovrà essere
 inizializzato nuovamente a zero. Se invece l'altezza inserita risulta essere pari
 al minimo bisognerà incrementare il contatore. Nel caso in cui l'altezza inserita
 fosse superiore al minimo quest’ultima non dovrà essere conteggiata. Il
 procedimento si ripeterà per l’altezza massima. Al termine il programma
 visualizza l'altezza minima, l'altezza massima, il numero di persone che hanno

 81

 un'altezza pari al minimo e il numero di persone che hanno un'altezza pari al
 massimo.

 82

 58. In una gara podistica si vogliono visualizzare il tempo migliore, il tempo peggiore e
 il tempo medio di percorrenza. Si preveda l’inserimento dei tempi di percorrenza
 dei diversi atleti effettuando tutti i controlli necessari sui valori inseriti in input. I
 tempi di percorrenza vengono forniti in secondi.

 59. Progettare un algoritmo che permetta di assemblare uno scatolone di pacchi di
 farina usando pacchi da 5kg e 1kg. L’algoritmo deve prevedere l’inserimento dei
 seguenti dati:

 a. numero totale di kg da inserire in uno scatolone;
 b. numero di pacchi da 5kg disponibili;
 c. numero di pacchi da 1kg disponibili.

 60. Uno scatolone può ritenersi assemblato se sono presenti almeno tutti i kg che può
 contenere, considerando la somma dei kg dei pacchi da 5kg e da 1kg. Non è però
 possibile dividere i pacchi di farina, quindi se lo scatolone può contenere 9kg di
 farina, e si hanno solo 2 pacchi da 5kg e nessuno da 1kg, non è possibile
 assemblare lo scatolone perché i pacchi da 5kg non possono essere divisi. Se
 invece si hanno a disposizione 1 pacco da 5kg e 5 pacchi da 1kg è possibile
 assemblare lo scatolone da 9kg perché avanza un pacco da 1kg intero e questo è
 considerato ammissibile.

 61. Si visualizzi come output una scritta che indichi se lo scatolone è o meno stato
 assemblato.

 62. Progettare un algoritmo che permetta di determinare il più grande numero primo
 fattore di un numero intero positivo dato. Si ricordi che per il teorema
 fondamentale dell’aritmetica un qualsiasi numero naturale maggiore di 1 o è un
 numero primo o si può esprimere come prodotto di numeri primi. Nel caso in cui il
 numero inserito sia minore o uguale ad 1 si richieda l’inserimento del numero, in
 qua nto 0 e 1 non sono considerati primi.
 Esempi:
 Input: 21 → Output: 7 perché 7 è il più grande numero primo (3 * 7 = 21)
 Input: 217 → Output: 31 perché 31 è il più grande numero primo (7 * 31 = 217)
 Input: 13 → Output: 13 poiché 13 è il più grande numero primo (13 = 13)
 Input: 0 → Richiedere l’immissione dell’input
 Input: 45 → Output: 5 perché 5 è il più grande numero primo (3 * 3 * 5 = 45)
 Input: -1 → Richiedere l’immissione dell’input

 63. Progettare un algoritmo che prende in input un numero maggiore o uguale a 5 e
 visualizzi un quadrato con le due diagonali, con una base e un’altezza pari al
 numero inserito in input.
 Ad esempio:
 Input: 5 → Output:

 ** **
 * * *
 ** **

 83

https://it.wikipedia.org/wiki/Teorema_fondamentale_dell%27aritmetica
https://it.wikipedia.org/wiki/Teorema_fondamentale_dell%27aritmetica

 Input: 8 → Output:

 ** **
 * * * *
 * ** *
 * * * *
 ** **

 64. Un grande magazzino ha 4 reparti identificati dai numeri 1, 2, 3 e 4. La direzione decide
 di applicare degli sconti ai prodotti dei diversi magazzini, differenziandoli per magazzino.
 Si progetti un algoritmo in grado di richiedere in input le quattro percentuali di sconto
 da applicare ai prodotti dei vari reparti e, successivamente richieda in input N prodotto
 con il relativo reparto di appartenenza e il prezzo, e visualizzi per ciascun prodotto
 inserito il prezzo scontato.

 65. Progettare un algoritmo in grado di svolgere le quattro operazioni fondamentali su due
 numeri.
 Visualizzare inizialmente il seguente menù:
 1) Somma
 2) Sottrai
 3) Moltiplica
 4) Dividi
 5) Esci

 66. Se viene scelta una delle opzioni da 1 a 4 viene svolta l’operazione aritmetica richiesta
 sui due numeri visualizzando il risultato. Successivamente viene nuovamente
 visualizzato il menù e richiesto l’inserimento di due numeri.
 Se invece viene scelta l’opzione 5 il programma deve terminare, salutando cortesemente
 l’utente. Usare lo switch-case per il menù.

 67. Progettare un algoritmo che preveda l’inserimento delle età degli studenti della tua
 classe e fornisca il numero di occorrenze del più grande.

 68. Progettare un algoritmo che visualizzi la rendita annuale di un investimento effettuato
 presso la banca “Più soldi per tutti”.
 La banca visualizza il piano di investimento usando il capitale iniziale in euro, la
 percentuale di interesse e il numero di anni dell’investimento.
 Il calcolo degli interessi si effettua tramite la seguente formula:
 interessi = capitale * tasso / 100
 e questi verranno sommati di anno in anno al capitale.
 Ad esempio se la somma dell’investimento è di 30000 euro al tasso del 12.5% per 10
 anni, il piano annuale dell’investimento dovrà essere il seguente:

Anno	Interesse	Capitale

 1 | 3750.00 | 33750.00
 2 | 4218.75 | 37968.75
 3 | 4746.09 | 42714.84
 4 | 5339.35 | 48054.19
 5 | 6006.77 | 54060.96

 84

 6 | 6757.62 | 60818.58
 7 | 7602.32 | 68420.90
 8 | 8552.61 | 76973.51
 9 | 9621.68 | 86595.19
 10 | 10824.39 | 97419.58

 69. Progettare un algoritmo che converta un numero binario in un numero in base 10. Il
 numero binario è rappresentato su N bit, e il valore di N dovrà essere fornito dall’utente.
 L’utente dovrà inserire le cifre del numero binario un bit alla volta, partendo dal bit
 meno significativo (ossia dal bit di peso 2 0). Il programma visualizzerà il numero in base
 10 corrispondente (non si utilizzino gli array).

 70. Progettare un algoritmo che calcoli il valore massimo e minimo di un insieme di N
 numeri inseriti da tastiera.

 71. Progettare un algoritmo che analizzi una sequenza di numeri. I numeri dovranno essere
 inseriti da tastiera e l’algoritmo dovrà visualizzare i seguenti risultati:

 ● quanti sono i numeri positivi, nulli e negativi;
 ● quanti sono i numeri pari e dispari;
 ● se la sequenza dei numeri inseriti è crescente, decrescente oppure ne crescente,

 nè decrescente.
 Si osservi che una sequenza è crescente se ogni numero è maggiore del
 precedente, è decrescente se ogni numero è minore del precedente, mentre non è
 crescente e neanche decrescente in tutti gli altri casi.

 72. Progettare un algoritmo che calcoli il massimo comune divisore (MCD) di due numeri
 interi positivi. Il MCD è definito come il massimo tra i divisori comuni ai due numeri.
 Dati due numeri, n1 e n2, il MCD di n1 e n2 è il massimo tra i numeri che sono
 divisori (con resto uguale a zero) sia di n1 che di n2. In particolare si supponga che
 n1 sia minore di n2, il MCD è il massimo tra i numeri compresi tra 1 e n1 che sono
 divisori (con resto uguale a zero) sia di n1 che di n2.

 73. Progettare un algoritmo che calcoli il minimo comune multiplo (MCM) di due numeri
 interi positivi.
 Dati due numeri interi n1 e n2, il minimo comune multiplo è il più piccolo numero m
 che è divisibile (con resto pari a zero) sia per n1 che per n2.

 74. Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
 quadrato di asterischi (‘*’) di lato pari al valore numerico inserito.
 Ad esempio:
 Input: 4 → Output:

 75. Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
 triangolo rettangolo di asterischi (‘*’) di altezza e base pari al valore numerico
 inserito.
 Ad esempio:
 Input: 4 → Output:
 *
 **

 85

 76. Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
 triangolo rettangolo di asterischi (‘*’) di altezza e base pari al valore numerico
 inserito, con il lato verticale spostato verso destra.
 Ad esempio:
 Input: 4 → Output:

 *
 **

 77. Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
 quadrato i cui lati siano formati da asterischi (‘*’) di lato pari al valore numerico
 inserito.
 Ad esempio:
 Input: 5 → Output:

 * *
 * *
 * *

 78. Progettare un algoritmo che chieda in input un numero maggiore di 1 e visualizzi un
 triangolo rettangolo i cui lati siano formati da asterischi (‘*’) di altezza e base pari al
 valore numerico inserito.
 Ad esempio:
 Input: 5 → Output:
 *
 **
 * *
 * *

 86

 Array
 Un array è una struttura dati indicizzata che può contenere:

 ● dati primitivi,
 ● oggetti
 ● altri array

 Un'array è caratterizzato da:

 1. Il nome che individua la struttura dati composta da vari elementi.
 2. Un indice che consente di accedere agli elementi dell'array.

 Se una variabile la si assimila a una scatola che contiene un valore. L'array si può
 assimilare a una cassettiera in cui ogni cassetto contiene un valore. Ogni cassetto è
 numerato (indice) a partire da zero.

 Cassettiera indica il nome dell'array e i
 numeri indicano l'indice.

 Le principali caratteristiche di un Array sono:

 ● Gli elementi contenuti nell'array devono essere dello stesso tipo .
 ● La lunghezza è fissa
 ● la lunghezza di un array deve essere dichiarata in fase d'inizializzazione

 87

 ● Il primo elemento dell'array si trova nella posizione 0, l'ultimo nella posizione
 n-1, dove n è la lunghezza dell’array.

 Per utilizzare un array bisogna passare attraverso le fasi di:

 1. Dichiarazione.
 2. Creazione
 3. Inizializzazione.

 Dichiarazione

 Come ogni variabile, un array deve essere dichiarato in Java. Questo può essere
 fatto in due modi equivalenti, ma il primo è più coerente con lo stile Java.

 Per dichiarare un array è necessario posporre (oppure anteporre) una coppia di
 parentesi quadre all’identificatore.

 Tipo[] nomeDellaVariabile;
 oppure

 Tipo nomeDellaVariabile[];

 char[] caratteri; /* definizione di un array di Caratteri */

 int[] numeri; /* definizione di un array di interi */

 88

 Moto[] modelli; /*definizione dell'array di oggetti di tipo Moto */

 Il valore default delle variabili di tipo array è null .

 Dichiarare un oggetto non significa creare un oggetto!

 int[] a;
 ● a non contiene l’oggetto
 ● a contiene il riferimento all’oggetto

 Creazione

 Un array è un oggetto speciale in Java e, in quanto tale, va istanziato. La sintassi è
 la seguente:

 nomeVariabile = new TipoDiDato[n];

 caratteri= new char[21];

 /* inizializzazione di un array di caratteri */

 numeri = new int[25];

 /* inizializzazione di un array di interi */

 modelli = new Moto[4];

 /* inizializzazione dell'array di oggetti di tipo Moto */

 È obbligatorio specificare al momento dell’istanza dell’array la dimensione dell’array
 stesso.

 89

 Inizializzazione di un array e accesso ai suoi elementi

 Il processo di creazione non ci fornisce un array vuoto, ma un array pieno di valori
 predefiniti. Ad esempio, per un array d'interi, questo è 0 e per un array di oggetti, il
 valore predefinito in ogni cella è null. Si accede a un elemento array (ad esempio,
 per impostarne il valore, o visualizzarlo sullo schermo o eseguire un'operazione con
 esso) tramite l'indice:

 nomeDellaVariabile[indice]

 Per inserire i dati un array, bisogna inserirli singolarmente in ogni elemento:

 caratteri [0] = 'a' ;

 caratteri [1] = 'b' ;

 90

 caratteri[20] = 'z' ;

 numeri [0] = 1 ;

 numeri[1] = 7 ;

 numeri [24] = 56 ;

 modelli[0]= new Moto(.....);

 modelli[3]= new Moto(.....);

 Oppure in modo più compatto durante la dichiarazione dell’array:

 La variabile dichiarata a (detta referenza all'oggetto) contiene il riferimento
 necessario a trovare l’oggetto puntato da a in memoria, in pratica a contiene
 l'indirizzo di una locazione di memoria a partire dal quale è memorizzato l'oggetto.

 char [] caratteri= { 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' ,

 'l' , 'm' , 'n' , 'o' , 'p' , 'q' , 'r' , 's' , 't' , 'u' , 'v' , 'z' };

 91

 Gli array definiscono, una proprietà, chiamata length, che restituisce la dimensione
 effettiva dell’array stesso. Quindi:

 caratteri.length

 vale 21.

 Per produrre tutti gli elementi di un array si esegue un ciclo dalla posizione zero alla
 posizione n-1:

s ProvaArray

blic static void main (String args[]) {

int x[] = new int [10];

for (int i= 0 ; i<= 9 ; i++) {

 x[i] = i; //riempiamo l'array con lo stesso valore

'indice

}

 for (int i= 0 ; i<x.length; i++) {

 System.out.println("x[" +i+ "] = " +x[i]);

}

 92

 // esempio di un Array di Stringhe

String stringa[] = { "primo" , "secondo" , "terzo" };

for (int i= 0 ; i<= 2 ; i++)

 System.out.println("stringa[" +i+ "] = " +stringa[i]);

}

 1. Prima si dichiara "x[]" come nuovo oggetto Array di massimo 10 elementi.
 2. Il primo ciclo for assegna a ogni elemento dell'Array il rispettivo numero "i".
 3. Nel secondo ciclo stampa su schermo tutti gli elementi dell'array.

 Il secondo Array è formato da elementi Stringa (Oggetti istanziati dalla Classe
 String).

 Prova il codice precedente

 Ciclo avanzato for-each

 Poiché in un array l’attraversamento è un operazione comune, Java fornisce una
 sintassi alternativa che rende il codice più compatto. Ad esempio, considera un ciclo
 for che visualizza gli elementi di un array su righe separate:

 for (int i = 0 ; i <values.length; i ++) {

 int value = values [i];

 System.out.println (value);

 }

 Il ciclo si può scrivere in questo modo:

 for (int value: values) {

 System.out.println (value);

 }

 Con questa variante del for non si devono specificare:

 93

http://jdoodle.com/a/LoY

 Il punto di partenza

 La lunghezza dell’array

 L’istruzione di modifica della condizione.

 Java rileva che la variabile values è un array e assegna alla variabile value il
 contenuto di ciascun elemento dell’array.

 Questa variante del for consente di scrivere meno codice quando si usano gli array.

 Utilizzare gli array nei metodi

 I metodi possono sia ricevere come argomento sia una variabile indicizzata che un
 intero array e possono restituire array.

 Variabili indicizzate come argomenti di un metodo

 Una variabile indicizzata di un array a, come a [i] , può essere utilizzata ogni volta
 che è possibile utilizzare una variabile del tipo base dell'array. Una variabile
 indicizzata può quindi essere un argomento di un metodo, così come ogni altra
 variabile dello stesso tipo base dell'array il valore della variabile a[i] non viene
 modificata nel metodo.

 Il metodo:

 public int somma (int a, int b){

 return a+b;

 }

 Riceve come argomento due numeri interi, si può chiamare il metodo passando
 come parametro due interi indifferentemente che siano variabili o costanti intere o
 elementi di un array di interi;

 int [] numero={ 1 , 2 , 3 };

 int a= 5 ;

 int b= somma(a,numero[1]);

 94

 Array come argomento di un metodo

 Il modo con cui si specifica che l'argomento di un metodo è un array è simile al modo
 con cui si dichiara un array. Per esempio, il seguente metodo cerca accetta come
 argomento un qualsiasi array d'interi:

 public class Esempio {

 public int cerca (int [] unArray, int valoreDaCercare) {

 for (int i= 0 ;i<unArray.length; i++)

 if (unArray[i]==valoreDaCercare)

 return i;

 return - 1 ;

 }

 }

 Quando si utilizza come parametro un array, è necessario indicare il tipo base
 dell'array, ma non si deve impostare la lunghezza dell'array stesso. È possibile
 utilizzare una sintassi alternativa per specificare che un array è un argomento di un
 metodo. Tale sintassi è simile a quella alternativa utilizzata in fase di dichiarazione di
 un array: è possibile specificare le parentesi quadre dopo il nome dell'array invece
 che dopo il tipo. La dichiarazione del precedente metodo diventa quindi:

 public int cerca(int unArray[],int valoreDaCercare)

 Nei metodi gli oggetti vengono passati per riferimento e quindi possono essere
 modificati dentro il metodo.

 Ad esempio, il seguente metodo eleva al quadrato tutti gli elementi di un array di
 interi:

 public class Main {

 public static void main (String args[]){

 int [] a={ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

 quadra(a);

 for (int i= 0 ;i<a.length;i++)

 95

 System.out.println(a[i]);

 }

 public static void quadra (int [] unArray){

 for (int i= 1 ;i<unArray.length;i++)

 unArray[i]=(int)Math.pow(unArray[i], 2);

 }

 }

 Codice

 Operazioni sugli array

 La ricerca sequenziale

 La ricerca sequenziale o lineare è l'algoritmo di ricerca più semplice, consiste nel
 confrontare ogni elemento dell’array con l’elemento che si sta cercando.

 Come cercare i
 calzini nella
 cassettiera. Si apre il
 cassetto zero e si
 vede se ci sono
 calzini, se non ci
 sono si apre il
 cassetto uno e così
 via fino alla fine.
 Quindi il
 procedimento è
 questo:

 96

https://trinket.io/java/f31f4bc85d

 Si scorre l’array dall’inizio e si confronta l’elemento dell’array con il valore cercato:

 1. se sono uguali si restituisce l’indice
 2. altrimenti si prosegue fino alla fine
 3. se si arriva alla fine restituisce -1 per segnalare che il valore cercato non è

 presente nell’array.

 public int cerca (int [] unArray, int valoreDaCercare) {

 for (int i= 0 ;i<unArray.length; i++)

 if (unArray[i]==valoreDaCercare)

 return i;

 return - 1 ;

 }

 97

 Riduzione

 Riduzione significa ridurre l’array in un singolo valore, eseguendo sugli elementi di
 un array delle operazioni. Sono esempi di riduzione di un array:

 ● la somma o il prodotto dei suoi elementi (o solo di alcuni elementi che godono
 di una proprietà comune)

 ● la media
 ● il numero degli elementi che godono della stessa proprietà (pari, dispari,

 positivi, ecc…)

 Esempio: dato un array scrivere una funzione che sommi tutti gli elementi dell'array.

 Si risolve come per il calcolo della somma di una sequenza si inizializza a zero la
 variabile somma(accumulatore) e ogni volta si aggiunge un elemento dell'array

 Quindi basta scorrere l'array e ogni volta sommare il valore corrispondente all'indice.

 public int somma (int [] vettore) {

 int somma = 0 ;

 for (int indice = 0 ; indice < vettore.length; indice++) {

 somma += vettore[indice];

 }

 98

 return somma;

 }

 Per il prodotto si procede allo stesso modo ma inizializzando prodotto al valore
 uno.

 Ordinamento di un Array

 Ordinare un array, significa, mettere gli elementi:

 ● In ordine alfabetico se sono stringhe.
 ● In ordine di grandezza se sono numeri.

 L'ordine può essere crescente o decrescente.

 Esistono diversi algoritmi di ordinamento che adottano strategie diverse. Ma tutti si
 basano su due operazioni fondamentali: confronto e scambio.

 Ordinamento per sostituzione(exchange sort)

 L'exchange sort è un semplice algoritmo di ordinamento efficace per Array di piccole
 dimensioni.

 Consiste nel confrontare ogni elemento, a partire dal primo, con tutti gli altri:

 Se si incontra un elemento più piccolo si procede allo scambio tra i due.

 99

 Alla fine di tutti i confronti nella prima posizione si trova l'elemento minore.

 Si ripete il procedimento per l’elemento nella seconda posizione, nella terza e così
 via fino all’ultimo elemento.

 100

 Se n è la dimensione dell’array per inserire il valore minimo nella prima posizione
 si hanno:

 ● n-1 confronti
 ● al massimo n-1 scambi.

 Per il secondo elemento si controllano

 ● n-2 confronti,
 ● al massimo n-2 scambi

 P er cui, alla fine, si hanno circa:

 n(n-1)/2 confronti

 un massimo di n(n-1)/2 scambi.

 101

 Il numero di confronti è costante anche in caso di parziale ordinamento degli
 elementi. Il numero di scambi dipende dal parziale ordinamento dell'array.

 Per realizzare L' algoritmo si utilizzano due cicli annidati:

 1. Il primo con un indice i che va da 0 a n-2
 2. Il secondo con un indice j che va da i+1 a n-1

 E all’interno del secondo ciclo un confronto tra vettore[i] e vettore[j] e se si verifica
 la condizione si effettua lo scambio tra gli elementi.

 public void exchangeSort(int[] v) {

 int i, j;

 i = 0;

 int dim = v.length;

 while (i < dim - 1) {

 j = i + 1;

 while (j < dim) {

 if (v[i] > v[j]) {

 int tmp = v[i];

 v[i] = v[j];

 v[j] = tmp;

 }

 j++;

 }

 i++;

 }

 }

 Oppure usando il ciclo for

 public void exchangeSort (int [] v) {

 int dim = v.length;

 for (int i = 0 ; i < dim - 1 ; i++) {

 102

 for (int j = i + 1 ; j < dim; j++) {

 if (v[i] > v[j]) {

 int tmp = v[i];

 v[i] = v[j];

 v[j] = tmp;

 }

 }

 }

 }

 Si può osservare che essendo l’array un oggetto viene passato per riferimento
 quindi la modifica dentro la funzione si ripercuote anche fuori dalla funzione.

 Selection Sort

 L'algoritmo precedente non è efficace a causa degli elevati scambi. Dato che la
 strategia consiste nell'inserire l'elemento minore a sinistra lo si migliora:

 1. Prima trovando l'elemento minimo
 2. E solo a fine ciclo si fa lo scambio.

 Per realizzare tale algoritmo si usano due cicli annidati:

 1. Il primo con un indice j che va da 0 a n-2
 2. Il secondo con un indice i che va da j+1 a n-1

 Prima di entrare nel secondo ciclo si assegna a una variabile k il valore dell'indice j.

 Nel ciclo interno si confronta vettore[i] con vettore[k] se si verifica la condizione si
 memorizza la posizione i in k.

 103

 Alla fine del ciclo se j e k sono diversi si effettua lo scambio tra gli elementi.

 public void selectionSort (int [] v) {

 let dim = v.length;

 for (int j = 0 ; j < dim - 1 ; j++) {

 int k = j;

 for (int i = j + 1 ; i < dim; i++) {

 if (v[i] < v[k])

 k = i;

 }

 if (k != j) {

 int tmp = v[j];

 v[j] = v[k];

 v[k] = tmp;

 }

 }

 }

 La classe Arrays

 L'algoritmo selection sort non è l'algoritmo di ordinamento più efficiente.

 Quando l'efficienza è una caratteristica importante, è opportuno utilizzare un
 algoritmo più complesso ma anche più efficiente. Fortunatamente la classe Arrays
 del package java.util, definisce il metodo statico sort. Dato unArray, un array di valori
 primitivi od oggetti, l'istruzione:

 Arrays.sort(unArray);
 ordina gli elementi dell'intero array in senso crescente. Per ordinare la sola porzione
 di array compresa fra l'indice inizio e l'indice fine, basta scrivere:

 Arrays.sort(unArray, inizio, fine);
 La classe Arrays fornisce diverse versioni del metodo per gestire sia array di classi
 sia array di tutti i tipi primitivi. Se si vuole ordinare un array di oggetti con Arrays.sort,
 l'oggetto deve implementare l'interfaccia Comparable.

 104

 L a classe Arrays contiene molti metodi (tutti statici) per manipolare gli array. Ci sono
 metodi per effettuare inizializzazioni, confronti, ricerche e ordinamenti, per
 trasformare un array in una lista e per ottenere una stringa dal contenuto dell’array
 (in modo da poter stampare il contenuto dell’array senza ricorrere ad un ciclo).

 Per un array di numeri interi:

 static void fill(int[] a, int val) assegna il valore specificato a ogni elemento
 dell’array;

 public static boolean equals(int[] a, int[] a2) confronta i due array e restituisce
 true se sono uguali; due array sono considerati uguali se contengono gli stessi
 elementi nello stesso ordine.

 static int binarySearch(int[] a, int key) cerca il valore indicato come key nell’array
 usando l’algoritmo di ricerca binaria;

 static void sort(int[] a) ordina l’array;

 static String toString(int[] a) restituisce una stringa che rappresenta il contenuto
 dell’array.

 Esistono i metodi corrispondenti per gli altri tipi elementari e per il tipo Object.

 Prova il Codice

 Esercizi

 1. Dato un array scrivere un metodo che sommi tutti gli elementi dell'array.

 2. Progettare un programma che permetta d'indicare se uno studente è sufficiente o
 meno di una materia basandosi sulla media dei voti della materia. Caricare i voti
 della materia in un array.

 3. Progettare un programma che converta un numero binario in un numero in base 10.
 Il numero binario è rappresentato su N bit, e il valore di N dovrà essere fornito
 dall’utente. L’utente dovrà inserire le cifre del numero binario un bit alla volta,
 partendo dal bit meno significativo (ossia dal bit di peso 2 0). Il programma
 visualizza il numero in base 10 corrispondente (si utilizzino gli array).

 4. Progettare un programma che permetta d'indicare se uno studente è ammesso o
 non ammesso alla classe successive in base alla media finale. La media finale dovrà
 essere calcolata come media delle medie di tutte le materie e, se risulterà >= 6

 105

http://jdoodle.com/a/LuR

 allora lo studente sarà ammesso alla classe successiva, altrimenti lo studente non
 sarà ammesso alla classe successiva.

 5. Progettare un programma che acquisisca da tastiera un vettore d'interi di
 dimensione N e calcoli minimo, massimo e media degli elementi.

 Si costruiscono tre metodi di riduzione una per il min una per il max e una per la
 media.

 6. Dato un vettore di valori numerici, progettare un programma che conti quanti
 elementi di un array sono compresi tra un valore minimo e un valore massimo forniti
 da tastiera, visualizzando sia il conteggio, sia l’elenco dei valori numerici.

 7. Progettare un programma che permetta di leggere 10 numeri interi e visualizzi la
 sequenza memorizzata senza le eventuali ripetizioni. Ad esempio, se nel vettore
 fossero memorizzati i valori: 15, 3, 5, 3, 11, 5, 15, 5, 15, 11, il programma dovrà
 visualizzare i valori 15, 3, 5, 11.

 8. Progettare un programma che memorizzi in un array le ore di studio di uno studente
 per ogni giorno del mese. L’algoritmo deve calcolare e visualizzare il numero totale
 di ore passate a studiare nel corso del mese, il numero di giorni in cui lo studente
 ha studiato per più ore e il numero di giorni in cui lo studente ha studiato di meno.

 9. In un array di 9 elementi sono memorizzate le presenze mensili degli studenti di una
 classe durante l’anno scolastico. Progettare un programma che determini:

 a) la media mensile di presenze nel corso dell’intero anno scolastico;
 b) il numero totale di presenze nel primo quadrimestre;
 c) il mese in cui si è registrato il numero massimo di presenze;
 d) il mese in cui si è registrato il numero minimo;
 e) la media delle presenze del secondo quadrimestre.

 10. Progettare un algoritmo che permetta d'indovinare in 6 tentativi un codice numerico
 composto da sei cifre nell’intervallo [100000 - 999999). Il codice numerico deve
 essere generato come numero pseudo casuale e deve essere salvato in un array
 d'interi, cifra per cifra.

 11. Progettare un algoritmo che preveda il caricamento dei nomi e delle età degli
 studenti della tua classe e visualizzi l’elenco dei nomi e delle età degli studenti
 maggiorenni.
 Sviluppare anche i seguenti punti:

 a. visualizzazione del nome e l’età del più vecchio;
 b. visualizzazione del nome e l’età del del più giovane;
 c. visualizzare la media delle età;
 d. visualizzare l’elenco dei nomi e le età degli studenti che hanno un’età

 maggiore della media;
 e. visualizzare l’elenco dei nomi e le età che hanno un’età minore della media.

 12. Progettare un algoritmo che preveda il caricamento dei cognomi e delle età degli
 studenti della tua classe e visualizzi prima l’elenco dei cognomi degli studenti
 maggiorenni e poi l’elenco dei cognomi degli studenti minorenni.

 13. Progettare un algoritmo che determini in un gruppo di persone quali risultano essere
 sottopeso, quali normopeso, quali in sovrappeso e quali obese. Si visualizzino gli
 elenchi delle persone che ricadono in ognuno dei gruppi. visualizzino gli elenchi delle

 106

 persone che ricadono in ognuno dei gruppi.
 Si consideri che l’Indice di Massa Corporea (IMC) di una persona si determina con la
 seguente formula:
 IMC = peso (kg) / altezza 2 (m 2)
 e che l’Organizzazione Mondiale della Sanità individua le seguenti quattro categorie:

 a) sottopeso: IMC inferiore a 19;
 b) normopeso: IMC nell’intervallo [19, 24];
 c) sovrappeso: IMC nell’intervallo (24, 30];
 d) obeso: IMC superiore a 30.

 14. Uno strumento di misura fornisce un dato ogni minuto nell’arco di un’ora. Per
 ovviare a possibili errori si vogliono elaborare i valori rilevati sostituendoli con una
 media a tre punti: ogni elemento viene sostituito dalla media di sé stesso,
 dell’elemento che lo precede e quello che lo segue. Per i due elementi estremi viene
 considerato due volte il valore dell’elemento stesso e una volta il successivo o il
 precedente nel caso si tratti rispettivamente del primo o dell’ultimo elemento.
 Progettare un algoritmo in grado di visualizzare i valori finali.

 15.

 107

 Programmazione orientata agli Oggetti

 Java è un linguaggio di programmazione orientato agli oggetti (OOP).

 La OOP è una metodologia di programmazione che considera il programma come
 costituito da oggetti (o istanze) che possono interagire fra loro. il suo stato. I metodi
 rappresentano le funzionalità che l’oggetto mette a disposizion

 In un programma, un oggetto può rappresentare un oggetto reale o una sua
 astrazione.

 Gli oggetti Java come gli oggetti del mondo reale hanno due caratteristiche:

 1. Attributi rappresentano gli elementi che caratterizzano l’oggetto, utili per
 descrivere le sue proprietà e definirne lo stato. Ad esempio, un oggetto
 Persona ha come attributi:

 ● nome, cogome sesso, ecc..
 2. Metodi ossia le azioni che può compiere:

 ● studia, cammina, parla ecc...

 108

 La programmazione basata sugli oggetti ha come obiettivo principale la creazione di
 nuovi tipi di dati denominati classi. Le classi sono progettate con lo scopo di
 modellare in astratto degli oggetti del mondo reale.

 Che è l'elemento minimo di un programma Java.

 Rappresenta un tipo di dato composta da:

 La programmazione a oggetti permette di:

 ◦ rappresentare un problema o delle entità reali attraverso oggetti software

 ◦ stabilire le relazioni che intercorrono tra le entità

 Gli oggetti di uno stesso tipo condividono lo stesso tipo di dato. Tutti gli oggetti di una
 classe hanno gli stessi attributi e lo stesso comportamento.

 Quando si definisce una classe, si costruisce il modello di un oggetto.

 109

 Ad esempio se si vuole creare un oggetto di tipo Moto.

 Una moto è piuttosto complessa:

 Se si sta creando un videogioco di corse, si ha bisogno di:

 Velocità massima, caratteristiche di manovrabilità, colore.
 Questo è il modello di una moto per il gioco.

 E i metodi accellera() frena ecc..

 Se si realizza un programma per un negozio di moto le
 informazioni sono diverse:

 Ad esempio targa anno 'immatricolazione prezzo
 ecc...

 e i metodi: vendi() immatricola() ecc...

 Il modello è diverso.

 Per costruire un oggetto di tipo moto si costruisce una classe con:.

 Attributi: il colore, la marca, la velocità, se è accesa.

 Come si vede, queste caratteristiche possono descrivere le proprietà fisiche
 dell’oggetto, come il colore. Possono anche indicare lo stato dell’oggetto in un
 determinato momento, possiamo sapere se la moto è accesa o spenta.

 Metodi. Si muove, Accelera, Frena, Si spegne

 110

 Una classe specifica gli attributi, o dati, degli oggetti della classe. La definizione della
 classe Moto indica che un oggetto di tale classe ha cinque attributi:

 ● una stringa che indica il colore
 ● una Stringa indica la marca della moto
 ● un intero che indica la velocità
 ● una stringa che indica la targa
 ● un valore booleano che indica se il motore è acceso

 La definizione di una classe non specifica il valore degli attributi, questi sono specifici
 dei singoli oggetti; la classe specifica solamente il tipo (di dato) di questi attributi.

 Una classe, inoltre, specifica le azioni che possono essere svolte dagli
 oggetti e come queste azioni vengono svolte.

 Per esempio, la classe Moto specifica quattro azioni:

 ● accelera
 ● decelera
 ● accendi
 ● spegni

 Queste azioni sono descritte all'interno della classe per mezzo di metodi.

 111

 Tutti gli oggetti di una classe hanno gli stessi metodi. Le definizioni dei metodi
 fanno parte della classe, essi descrivono il modo in cui gli oggetti svolgono le
 azioni.

 La classe può essere immaginata come uno stampo dal quale vengono creati gli
 oggetti, tutti con gli stessi attributi e gli stessi metodi, un oggetto può esistere solo se
 esiste la relativa classe che ne descrive le caratteristiche e le funzionalità.

 Istanze

 Gli oggetti di questa classe rappresentano moto specifiche. Per creare oggetti si
 deve istanziare la classe, le varie istanze sono completamente indipendenti l'una
 dall'altra e quindi se si creano tre oggetti di tipo "Moto" si ottengono tre Moto(
 oggetti) diverse.

 si dice che l’oggetto moto1 è un’istanza della classe Moto. Allo stesso modo
 l’oggetto moto2 è un’istanza della classe Moto. Quindi la stessa classe può generare
 più istanze che differiscono per il valore assunto dai suoi attributi, ma tutte possono
 utilizzare i metodi della classe.

 La struttura base della dichiarazione di una classe in Java è la seguente:

 112

 class NomeClasse {

 // attributi

 // metodi

 }
 La parola chiave class serve per iniziare la dichiarazione di una classe ed è seguita
 dal nome della classe. Per convenzione, i nomi delle classi si indicano con la lettera
 iniziale maiuscola.

 Tra le parentesi graffe si inserisce tutto il contenuto della classe, costituito dagli
 attributi e dai metodi. Naturalmente possono esistere classi formate da soli attributi
 oppure da soli metodi.

 Variabili d'istanza

 Le variabili d'istanza sono quelle variabile che sono definite all'interno di una
 classe(attributi), ma fuori dai metodi della classe stessa.

 La sintassi per la dichiarazione di una variabile è la seguente:

 [modificatori] tipo nome [= inizializzazione];

 dove:

 Modificatori : parole chiavi di Java che consentono di definire il livello di accesso
 degli attributi o dei metodi della classe (public, private, protected,final).

 113

 tipo: Data type della variabile.

 nome: il nome della variabile

 Gli attributi della la classe moto sono:

 1. una Stringa indica la marca della moto

 2. una stringa che indica la targa.

 3. una stringa che indica il colore

 4. un numero intero che indichi i cavalli

 5. un valore booleano che indica se il motore è acceso o spento.

 114

 Per creare un oggetto si deve istanziare la classe:

 Per prima cosa si definisce una variabile usando come data Type il nome della
 classe.

 Questa istruzione dichiara che la variabile ktm è un riferimento (reference) a un
 oggetto della classe Moto.

 Usando l'operatore new si crea il nuovo oggetto.

 115

 new Moto ();

 crea e inizializza un nuovo oggetto il cui indirizzo viene quindi assegnato a ktm.

 Le variabili d'istanza assumono i valori di default perché non gli è stato assegnato
 nessun valore.

 116

 Quando si crea un oggetto java esegue il metodo costruttore. Se questo non è
 definito come nel nostro caso java crea un costruttore vuoto.

 Costruttore

 Quando si crea un oggetto di una classe utilizzando l'operatore new, si invoca un
 particolare tipo di metodo chiamato costruttore , il quale deve avere lo stesso
 nome della classe , e può avere dei parametri che utilizzerà per inizializzare, le
 variabili d'istanza se non inseriamo un costruttore java ne inserisce uno di default
 vuoto.

 Quando si definisce un costruttore, non si specifica nessun tipo di ritorno. I
 costruttori forniscono un valore a tutte le variabili d'istanza, anche se non hanno un
 parametro per ognuna di esse. Se il costruttore non inizializza una particolare
 variabile d'istanza, lo farà Java, assegnando un valore di default. In ogni modo,
 quando si definisce un costruttore, è una normale pratica in programmazione
 assegnare esplicitamente un valore a tutte le variabili d'istanza.

 La classe moto con il costruttore:

 117

 Il costruttore possiede i parametri d'input: String marca, String targa, String colore,
 int cavalli, boolean acceso (indicati tra le parentesi dopo il nome)

 ● il corpo del costruttore imposta il valori degli attributi assegnandogli i valori dei
 parametri d'ingresso.

 ● I parametri d'ingresso hanno lo stesso nome degli attributi.
 ● Per risolvere il conflitto di nomi tra gli attributi della classe Moto e i parametri

 d'ingresso viene utilizzata la parola chiave this.

 Quando si invoca il costruttore il compilatore alloca una quantità di memoria idonea
 a contenere l'oggetto e ritorna nella variabile ktm il suo riferimento. Si può dunque
 dire che il processo di creazione di un oggetto si attua in due passaggi:

 1. con una dichiarazione dove si dice che una variabile è di un certo tipo e che può
 contenere un oggetto di quel tipo;

 2. con una definizione dove si alloca uno spazio di memoria che contiene l'oggetto
 creato (new) e il cui riferimento viene salvato nella variabile.

 Un oggetto può avere al proprio interno più variabili, le sue variabili d'istanza.

 118

 L'oggetto km diventa:

 119

 Ricapitolando:

 1 Se non viene creato esplicitamente un costruttore, il compilatore
 provvederà in autonomia a crearne uno vuoto, definito costruttore di default.

 2 Il costruttore ha lo scopo d'inizializzare le variabili d'istanza dell’oggetto
 creato, al fine di porle in uno stato consistente.

 3 Se non si esplicita un valore da dare alle variabili d'istanza, il compilatore
 provvederà automaticamente a inizializzare con i valori di default.

 Inoltre i costruttori possono essere sovraccaricati, ovvero si possono scrivere più
 costruttori con parametri differenti per tipo, per numero e per posizione. Ciò
 consente di creare l’oggetto passando una varietà d'inizializzatori; a seconda del
 numero, tipo e ordine degli argomenti, il compilatore invocherà il costruttore corretto
 (con lo stesso numero, tipo e ordine dei parametri). L’utilizzo delle varie forme di
 costruttori ci permette d'introdurre un concetto tipico della programmazione object
 oriented: l’overloading di metodi. Si parla di overloading di metodi quando esistono
 nella stessa classe metodi che hanno lo stesso nome ma un differente numero di
 parametri.

 Solitamente tutte le variabili d'istanza sono dichiarate private.

 Per creare oggetti di tipo Moto creiamo una classe Main con il metodo static main.

 120

 Codice

 Eseguendo il programma precedente si ottiene come output:

 Moto@2a139a55
 Moto@15db9742

 I metodi:

 print(oggetto) e println(oggetto)

 stampano lo stato dell'oggetto trasformandolo in una stringa . Questo succede
 perché viene richiamato il metodo:

 toString()
 Della classe Object da cui tutte le classi Java ereditano.

 Il metodo toString() ereditato, come rappresentazione dell'oggetto, restituisce una
 stringa con il nome della classe a cui appartiene l'oggetto seguito dall'indirizzo
 dell'oggetto in memoria.

 Per ottenere una stringa più appropriata bisogna ridefinire il metodo.

 Dichiarazione e implementazioni dei metodi

 metodo toString

 La dichiarazione o firma di un metodo è così composta:
 121

https://replit.com/@RolandoSucco/CiaoMondo-1

 Per riscrivere il metodo toString della classe Object

 La firma è:

 public String toSting()
 ovvero stiamo dichiarando che:

 ● è public, quindi accessibile in qualunque altra parte del codice (anche
 all'esterno della classe Moto)

 ● il metodo deve ritornare un valore di tipo String (parametro di output del
 metodo). Il codice del metodo deve terminare con un'istruzione return che
 restituisca al chiamante un valore di tipo String

 ● il nome del metodo è toSting
 ● (): il metodo non ha parametri d'ingresso. Le parentesi tonde sono infatti vuote

 Dopo la firma del metodo segue il corpo del metodo delimitato dalle parentesi graffe:

 return "Moto: targa: "+targa +" modello: "+modello+" colore:
 "+colore+" cilindrata: "+cilindrata;

 Il metodo esegue una sola istruzione: restituisce lo stato dell'oggetto.

 Nota:

 Non esiste una forma "standard" per la rappresentazione di un oggetto. Dipende
 molto dal significato della classe, dal suo contenuto e soprattutto da dove si intende
 usare la rappresentazione testuale.

 La classe moto con il metodo toString.

 122

 Codice

 Metodo set

 L'oggetto Moto costruito è un oggetto immutabile. Una volta creato non può essere
 modificato in nessun modo. Per poterlo modificare si devono scrivere dei metodi
 chiamati set la cui firma è:

 public void setAttributo(Tipo attributo)
 Ad esempio:

 public void setTarga (String targa) {

 this .targa= targa;

 }

 possiamo notare:

 o il tipo di ritorno del metodo void. Questa è la parola chiave utilizzata in Java per
 indicare che il metodo non ritorna nulla (il metodo infatti serve per impostare un
 nuovo valore per la variabile colore, ma non deve restituire nulla)

 o Il nome formato dalla parola set seguito dal nome dell'attributo in maiuscolo
 (convenzione java):

 123

https://replit.com/@RolandoSucco/CiaoMondo#Main.java

 o il metodo possiede un parametro di ingresso (o di input): String targa (indicato tra
 le parentesi dopo il nome del metodo)

 o il corpo del metodo imposta il valore dell'attributo targa assegnandogli il valore del
 parametro di ingresso. Da notare che il parametro di ingresso si chiama anch'esso
 targa. Per risolvere il conflitto di nomi tra l'attributo della classe Moto ed il parametro
 di ingresso del metodo viene utilizzata la parola chiave this.

 In modo analogo si creano metodi set per tutti gli attributi che si possono modificare
 della Classe.

 Il Dot-Operator

 Per accedere ai metodi o agli attributi di una classe java mette a disposizione il Il
 dot-Operator

 124

 Codice

 Metodo get

 Per ottenere i dati contenuti in una variabile d'istanza si usa il metodo get la cui firma
 è:

 public Tipo getAttributo()
 Ad esempio:

 public String getTarga () {

 return targa;

 }

 possiamo notare:

 o Il tipo di ritorno è il tipo dell'attributo di cui si vuole sapere il valore. Nel nostro caso
 String

 ● Il nome è formato dalla parola get seguita dal nome dell'attributo in maiuscolo
 (convenzione java).

 ● Il metodo non possiede un parametro d'ingresso (o di input).
 ● Il corpo del metodo contiene il return dell'attributo.

 125

https://replit.com/@RolandoSucco/Moto#Main.java

 In modo analogo si creano i metodi get per tutti gli attributi della Classe.

 Normalmente tutti i metodi sono public. Se un metodo deve essere usato solo dagli
 altri metodi della sua classe, allora dovrebbe essere reso privato.Tutte le variabili
 d'istanza dovrebbero essere dichiarate private. In questo modo si costringe chi usa
 la classe ad accedere alle variabili d'istanza solo attraverso i metodi della classe.
 Questo permette alla classe di controllare tutte le attività di lettura e scrittura dei
 valori delle variabili d'istanza.

 Scope

 La portata e la durata delle variabili

 Java consente di dichiarare le variabili all'interno di qualsiasi blocco(un blocco inizia
 con una parentesi graffa aperta e termina con una parentesi graffa chiusa) che
 definisce un ambito. Un ambito determina quali oggetti sono visibili ad altre parti del
 programma.

 In Java, i due gli ambiti principali sono quelli:

 1. Definiti da un metodo.
 2. Definiti da una classe.

 Le variabili dichiarate all'interno di un ambito non sono visibili (cioè, accessibili) al
 codice definito all'esterno di tale ambito. Quindi, quando si dichiara una variabile
 all'interno di un ambito, si localizza quella variabile proteggendola da accessi e/o
 modifiche non autorizzate. Una variabile dichiarata all'interno di un blocco è
 chiamata a variabile locale.

 ▪ Variabili locali: Sono create quando un metodo viene chiamato e cancellate
 dalla memoria quando il metodo termina.

 126

 La dichiarazione della variabile può avvenire ovunque all’interno di un blocco di
 codice, il quale è rappresentato da un gruppo d'istruzioni poste tra le parentesi graffe
 di apertura { e chiusura }, e dopo tale dichiarazione la variabile medesima può
 essere utilizzata. Se si creano blocchi annidati, la variabile del blocco più esterno è
 visibile all’interno del blocco interno, ma non vale il contrario.

 Parametri formali

 Sono quelle variabili che vengono dichiarate all’interno delle parentesi tonde di un
 determinato metodo.

 127

 Variabili di classe (static)

 Le variabili di classe infine, comunemente dette anche static field o campi statici,
 sono variabili d'istanza ma nella loro definizione viene usata la keyword ‘static’.

 static int v = 6;
 Una variabile di classe è una variabile visibile da tutte le istanze di quell’oggetto e il
 suo valore non cambia da istanza a istanza, per questo appartiene trasversalmente
 a tutta la classe.

 128

 Codice

 ● static applicata ad un attributo: tutti gli oggetti della classe che vengono
 istanziati condividono lo stesso attributo.

 Per accedere a un attributo static della classe si usa la sintassi
 nomeClasse.nomeAttributo.

 ● static applicata a un metodo: indica che il metodo è accessibile
 utilizzando direttamente il nome della classe e non necessita di un oggetto
 istanziato. La sintassi sarà quindi nomeClasse.nomeMetodo

 È possibile definire un blocco static che viene eseguito una sola volta (quando la
 classe viene portata in memoria) in tale blocco si inseriscono di solito delle
 operazioni per inizializzare le variabili static.

 Esempio di Codice

 129

https://www.jdoodle.com/a/uDf
https://repl.it/@RolandoSucco/uso-delle-variabili-statiche

 Un'osservazione da fare riguarda la possibilità di conflitti di nome su di una variabile
 che ne alterano lo scope. Quando una variabile locale ed una globale hanno lo
 stesso nome (e sono contemporaneamente utilizzabili anche in base ai privilegi
 determinati dal qualificatore di accesso), la variabile locale ha sempre priorità su
 quella globale.
 Esempio di conflitto di nome nello scope di una variabile

 130

 .

 Il paradigma della OOP

 La programmazione a oggetti si basa su tre paradigmi fondamentali:

 1. 1. Incapsulamento;
 2. 2. Ereditarietà;
 3. 3. Polimorfismo.

 Incapsulamento

 Secondo il paradigma della OOP, l’incapsulamento prevede che tutto quello che
 riguarda un oggetto deve essere necessariamente definito al suo interno,
 l’utilizzatore dell’oggetto dovrebbe accedere agli attributi unicamente attraverso i
 metodi, evitando di accedervi direttamente.

 Con l’incapsulamento si ottiene l’information hiding, ovvero il processo di
 nascondere il più possibile i dettagli d'implementazione al fine di ridurre la
 complessità di un oggetto. Il programmatore può quindi focalizzarsi sul nuovo
 oggetto senza preoccuparsi dei dettagli di implementazione, avendo dunque a che
 fare con classi più semplici.

 Un oggetto dotato di buon incapsulamento possiede un’alta information hiding,
 poiché espone all’esterno pochi elementi. Quando un altro oggetto, nel programma,
 dovrà fare uso dell’oggetto ben incapsulato, utilizzerà quei pochi elementi visibili
 dall’esterno.

 Inoltre, una classe nasconde sempre l’implementazione dei propri metodi, ovvero il
 codice che viene eseguito all’interno dei metodi. L’unica cosa visibile da parte del
 codice esterno alla classe è la firma del metodo. Potremmo dire che una classe
 mostra all’esterno “cosa fa, ma non come lo fa”.

 131

 Chiunque può alzare la cornetta, comporre un numero telefonico e conversare con
 un’altra persona, ma pochi conoscono la sequenza dei processi scatenati da queste
 poche, semplici azioni. Evidentemente, per utilizzare il telefono, basta conoscere la
 sua interfaccia pubblica (costituita dalla cornetta e dai tasti), non la sua
 Implementazione interna.

 A livello d'implementazione ciò si traduce semplicemente nel dichiarare privati gli
 attributi di una classe e quindi inaccessibili fuori dalla classe stessa. L’accesso ai dati
 potrà essere fornito da un’interfaccia pubblica costituita da metodi dichiarati public.

 Nulla vieta di utilizzare private, anche come modificatore di metodi, ottenendo così
 un incapsulamento funzionale. Un metodo privato infatti, potrà essere invocato solo
 da un metodo definito nella stessa classe, che potrebbe a sua volta essere
 dichiarato pubblico.

 132

 Ereditarietà

 Il concetto di ereditarietà è ispirato a qualcosa che esiste nella realtà. Nel mondo
 reale noi classifichiamo tutto con classi e sottoclassi. Per esempio un cane è un
 animale, una moto è un veicolo, la chitarra è uno strumento musicale.

 Questo permette di affermare che un certo concetto è un concetto particolare di un
 concetto più generale.

 Questa relazione può essere letta in due modi dal generale al particolare e
 viceversa.

 133

 Questa è una relazione tra classi e non tra istanze.

 Perché ad esempio tutti i cani sono particolari tipi di Animali, ma non tutti gli animali
 sono cani.

 La generalizzazione quando viene implementata in un linguaggio a oggetti porta al
 concetto di ereditarietà. Consideriamo due classi ClasseUno e ClasseDue ognuna
 con un suo attributo e un suo metodo:

 Se ClasseDue è una sotto classe di ClasseUno allora eredita i metodi e gli attributi
 di ClasseUno.

 134

 Il risultato immediato è la possibilità di ereditare codice già scritto, e quindi gestire
 insiemi di classi collettivamente, giacché accomunate da alcune caratteristiche.
 L’ereditarietà, permette di creare delle gerarchie di classi.

 Le frecce indicano la relazione. In questo caso la classe Taxi è una sottoclasse della
 classe Auto, che è a sua volta una sottoclasse della classe Veicoli. La classe Taxi,

 135

 eredita tutti i membri pubblici e protetti sia della classe Auto sia della classe Veicoli.
 Infine, ricordiamo che tutte le classi Java derivano implicitamente dalla classe
 Object.

 La parola chiave extends

 In Java per indicare che una classe B eredita da una classe si usa la parola chiave
 extends, proprio perché B estende A. La sintassi è:

 Vediamo un semplice esempio di come i membri di una classe vengono ereditati da
 una sotto classe. Consideriamo due semplici classi:

 Scriviamo una classe di test dove facciamo un'istanza della sottoclasse.

 136

 Si può notare che usiamo un oggetto di SottoClasse per accedere agli attributi
 d'istanza di SuperClasse.

 Codice
 Nel caso precedente però non abbiamo reso privati i due attributi
 contravvenendo al principio dell'incapsulamento. Se provate a rendere privati i due
 attributi otterrete un errore di compilazione, questo perché:

 Un oggetto della sottoclasse non deve accedere agli attributi privati della super
 Classe.

 Per poter utilizzare questi attributi si scrive un metodo pubblico nella superclasse.

 137

https://repl.it/@RolandoSucco/Prova-ereditarieta

 Se si esegue un test si vede che siccome le variabili non sono state inizializzate
 restituiscono il valore di default(null e zero). Questo problema lo si risolve con i
 costruttori.

 Ereditarietà e costruttori

 Il costruttore è un metodo speciale, che possiede le seguenti proprietà:

 1 ha lo stesso nome della classe;

 2 non ha tipo di ritorno;

 3 è chiamato automaticamente (e solamente) ogni volta che viene
 istanziato un oggetto della classe;

 4 è presente in ogni classe;

 138

 5 Il compilatore introduce il “costruttore di default”, nel caso il
 programmatore non gliene abbia fornito uno in maniera esplicita;

 Un’altra proprietà del costruttore è che nel caso di ereditarietà:

 Il costruttore, della sottoclasse come prima istruzione,
 invoca sempre il costruttore della superclasse.

 Quindi i costruttori vengono eseguiti in modo verticale.

 Ad Esempio consideriamo le classi Moto e Veicoli così strutturate:

 Se creiamo un oggetto Moto a= new Moto(); L’output risultante sarà:

 Costruttore Veicoli

 Costruttore di una moto

 Il costruttore Moto() ha prima invocato il costruttore Veicoli() (superclasse) e poi è
 stato eseguito.

 La parola chiave super

 La parola chiave super è utilizzata in Java per riferirsi agli elementi della
 superclasse. In ogni costruttore, è sempre presente una chiamata al costruttore della
 superclasse tramite il reference super(). Per esempio nella classe Moto il costruttore
 verrà modificato dal compilatore nel seguente modo:

 public class Moto extends Veicoli {

 public Moto ()

 {

 super ();

 139

 System.out.println("Costruttore di una moto");

 }

 }

 Supponiamo ora di dotare la superclasse Veicoli di un costruttore che imposti la
 variabile colore.

 public class Veicoli {

 public Veicoli (String colore) {

 this .colore = colore;

 }

 }

 Questa classe compilerà, ma Moto non compilerà più:

 Questo succede perché, se un costruttore viene aggiunto esplicitamente, nessun
 altro costruttore di default viene implicitamente inserito. Quindi l’istruzione super()
 inserita implicitamente nella sottoclasse Moto prova a chiamare il costruttore della
 superclasse senza parametri. Per risolvere il problema bisogna modificare il
 costruttore di Moto in modo tale da fargli chiamare il costruttore della superclasse
 Veicoli che prende in input il colore:

 public class Moto extends Veicoli {

 public Moto (String colore){

 140

 super (colore);

 System.out.println("Costruttore di una moto");

 }

 }

 La chiamata al costruttore della superclasse mediante super() deve essere la prima
 istruzione di un costruttore e non potrà essere inserita all’interno di un metodo che
 non sia un costruttore.

 codice
 Come per l'operatore this, anche super, viene utilizzato sia per le variabili :

 super.variabile
 che per invocare altri metodi

 super.metodo()
 E' possibile riferirsi solo agli elementi contenuti nella superclasse, non è consentito
 pertanto utilizzare super.super. Se una super classe eredita degli elementi visibili,
 questi diventano degli elementi a tutti gli effetti della classe, di conseguenza si
 potranno utilizzare direttamente con un solo super.

 Gerarchie di classi

 Una sottoclasse può essere superclasse di un proprio discendente, così si forma
 una gerarchia di classi:

 Upcasting, downcasting

 Upcasting consente a un oggetto di un tipo di sottoclasse di essere trattato come un
 oggetto di qualsiasi tipo di superclasse. L' Upcasting viene eseguito

 141

https://repl.it/@RolandoSucco/Uso-di-Super

 automaticamente, mentre il downcasting deve essere fatto manualmente dal
 programmatore. Usiamo la gerarchia Veicoli per spiegare come funziona la gerarchia
 delle classi.

 Auto e Moto sono entrambi Veicoli, quindi per l'ereditarietà, ha tutte le proprietà dei
 suoi antenati. Il che significa logicamente:

 Se i veicoli hanno un proprietario allora anche le auto hanno un proprietario.

 Ciò significa che non abbiamo bisogno di scrivere per ogni veicolo possibile, che ha
 un proprietario. Lo si scrive una volta, e ogni veicolo lo ottiene attraverso
 l'ereditarietà.

 Col casting non si sta modificando l'oggetto, lo si sta etichettando in modo
 diverso. Se si crea un Auto e la si assegna a un Veicolo, l'oggetto è ancora un'auto,
 ma è trattato come qualsiasi altro veicolo e le sue proprietà sono nascoste fino a
 quando non vengono assegnate a un auto.

 Diamo un'occhiata al codice dell'oggetto prima e dopo l'upcasting:

 Auto miaAuto = new Auto();

 142

 Veicolo un Veicolo;

 unVeicolo = miaAuto;

 System.out.println(miaAuto);

 System.out.println(unVeicolo);

 Auto dopo l'upcasting è esattamente la stessa Auto, non è diventata un
 Veicolo, è stato solo etichettato comeVeicolo. Questo è permesso, perché Auto è
 un Veicolo. Anche se sono entrambi dei Veicoli, Auto non può essere assegnato a
 una Moto.

 È possibile assegnare a una variabile della superclasse (Veicolo) un oggetto della
 sottoclasse(Auto)

 se proviamo a fare l'inverso otteniamo un errore:

 143

 non è possibile assegnare a una variabile della sotto classe (Auto) un oggetto della
 super classe (Veicolo)

 Main. Java:25: error: incompatible types: Veicolo cannot be
 converted to Auto miaAuto-unVeicolo;

 Il downcasting si deve sempre fare manualmente:

 Auto miaAuto = new Auto();

 Veicolo unVeicolo = miaAuto; //upcast automatico a Veicolo

 Auto miaAuto = (Auto) unVeicolo; //downcasting manuale a Auto

 Questo perché l'upcasting non può mai fallire. Ma se si ha un gruppo di Veicoli
 diversi e si vogliono assegnare tutti a un Auto, allora c'è una possibilità, che alcuni di
 questi Veicoli sono in realtà Moto, e il processo fallisce lanciando
 ClassCastException.

 L'operatore instanceof

 Per conoscere il tipo dell'oggetto contenuto in una variabile durante l'esecuzione del
 programma, è possibile utilizzare l 'operatore instanceof, che indica se un
 determinato oggetto è di tipo specificato. Per esempio, per sapere se mioVeicolo è di
 tipo Auto, si può scrivere:

 Auto miaAuto = new Auto();

 Veicolo unVeicolo= miaAuto;

 if (unVeicolo istanceof Auto) { // testare se il veicolo

 è un Auto

 System.out.println ("È un Auto! Ora si può ridurre a un

 Auto") ;

 Auto miaAuto= (Auto) unVeicolo;

 }

 144

 Codice

 Se si usa un metodo della sotto classe da una variabile della superclasse che sta
 puntando a un oggetto della sottoclasse si ottiene un errore di compilazione, perché
 il metodo non è visibile.

 Questo significa che
 la variabile v anche
 se punta a un
 oggetto della sua
 sottoclasse non può
 accedere ai suoi
 metodi.

 Quindi è solo il Reference Type della variabile che determina quali sono i metodi
 visibili da variabile e non Object Type.

 Polimorfismo

 Il polimorfismo consente di
 riferirci con un unico termine
 a "entità" diverse. Ad
 esempio, sia un telefono

 145

https://repl.it/@RolandoSucco/Reference

 fisso sia un portatile permettono di telefonare, dato che entrambi i mezzi sono
 definibili come telefoni.

 Telefonare quindi, può essere considerata un'azione polimorfica.

 Polimorfismo per metodi

 Il polimorfismo per metodi, ci permette di utilizzare lo stesso nome per metodi
 differenti. In Java esso trova una sua realizzazione pratica sotto due forme:

 ● l'overload (che potremmo tradurre con "sovraccarico")
 ● l'override (che potremmo tradurre con "riscrittura").

 Overload

 In Java un metodo è univocamente determinato non solo dal suo identificatore ma
 anche dalla sua lista di parametri, cioè dalla sua firma . Quindi, in una classe
 possono convivere metodi con lo stesso nome ma con differente firma. Per esempio
 potremmo assegnare lo stesso nome a due metodi che concettualmente hanno la
 stessa funzionalità, ma soddisfano tale funzionalità in maniera differente.

 146

 Presentiamo di seguito un banale esempio di overload:

 La lista dei parametri ha tre criteri di distinzione:

 1. tipale es .: somma(int a, int b) è diverso da somma(int a, float b)

 2. numerico es.: somma(int a, int b) è diverso da somma(int a, int b, int c)

 3. posizionale es. : somma(int a, float b) è diverso da somma(float a, int b)

 Override

 L'override (che potremmo tradurre con "riscrittura") è il termine object oriented che
 viene utilizzato per descrivere la caratteristica, che hanno le sottoclassi, di ridefinire
 un metodo ereditato da una superclasse.

 147

 Non esisterà override senza ereditarietà. Una sottoclasse è sempre più specifica
 della classe che estende, e quindi potrebbe ereditare metodi che hanno bisogno di
 essere ridefiniti per funzionare correttamente nel nuovo contesto

 public class Animale {

 public void verso () {

 System.out.printin("Grunt");

 }

 public class Ghepardo extends Animale {

 public void verso () {

 System.out.printIn("Groar!");

 }

 }

 public class Muflone extends Animale {

 public void verso () {

 System.out.println("MO000!");

 }

 }

 Per l'override si devono rispettare queste regole:

 1. Il metodo riscritto nella sottoclasse deve avere la stessa firma (nome e parametri)
 del metodo della superclasse.

 2. Il tipo di ritorno del metodo della sottoclasse deve coincidere con quello del
 metodo che si sta riscrivendo, o deve essere di un tipo che estende il tipo di ritorno
 del metodo della superclasse.

 3. Il metodo ridefinito nella sottoclasse non deve essere meno accessibile del
 metodo originale della superclasse."

 Il modificatore final

 È possibile specificare che un metodo non può essere ridefinito nelle classi derivate.
 Per fare questo è sufficiente aggiungere il modificatore final alla dichiarazione del
 metodo, come mostrato di seguito:

 public final void unMetodo()
 148

 Un intera classe può essere dichiarata final. Le classi final non possono essere
 utilizzate come classi base di classi derivate. Ecco la sintassi per dichiarare una
 classe come final:

 public final class unaClasse {final void myMethod()

 Binding Dinamico

 Supponiamo di dover progettare un insieme di classi che rappresentano diverse
 tipologie di figure geometriche: rettangoli, cerchi e così via. Ogni figura può essere
 un oggetto di una classe differente:

 In un buon progetto software, queste classi dovrebbero tutte derivare da un'unica
 classe, il cui nome potrebbe essere Figura.

 149

 Si supponga di voler definire dei metodi che permettano di calcolare l'area e il
 perimetro di una figura geometrica. Ogni classe ha bisogno di un proprio metodo
 visto che deve eseguire operazioni diverse. Sapendo che i metodi appartengono a
 classi diverse, è possibile assegnare ai metodi lo stesso nome:

 area()

 perimetro()

 Se r è un oggetto di tipo Rettangolo e c è un oggetto di tipo Cerchio , il
 comportamento dei metodi:

 150

 r.area()

 r.perimetro()
 e

 c.area()

 c.perimetro()
 sarà diverso, perché corrisponde all'invocazione di due metodi ben distinti che hanno
 implementazioni differenti.

 La classe base Figura può avere dei metodi utilizzabili da tutte le figure. Per
 esempio, la classe Figura può implementare un metodo che visualizza l'area e il
 perimetro della figura. Il metodo visualizza della classe Figura può utilizzare i metodi
 area e perimetro. Un implementazione della classe Figura potrebbe essere:

 public class Figura {

 public void visualizza () {

 System.out.println("Area " + area());

 System.out.println("Perimetro" + perimetro());

 }

 public double area () {

 // Implementazione vuota; in Figura non si sa come implementarlo

 // poiché dipende dalla specifica figura

 return 0 ;

 }

 public double perimetro (){

 // Implementazione vuota; in Figura non si sa come implementarlo

 // poiché dipende dalla specifica figura

 return 0 ;

 }

 }

 151

 Le classiCerchio e Rettangolo

 class Cerchio extends Figura {

 private double raggio;

 private final double PI = 3.14 ;

 Cerchio(double raggio) {

 this .raggio = raggio;

 }

 public double area () {

 return PI * raggio * raggio;

 }

 public double perimetro () {

 return 2 * PI * raggio;

 }

 }

 class Rettangolo extends Figura {

 private double altezza;

 private double base;

 Rettangolo(double base, double altezza){

 this .base=base;

 this .altezza=altezza;

 }

 public double area (){

 return base*altezza;

 }

 public double perimetro (){

 return 2 *base+ 2 *altezza;

 }

 }

 Quando si pensa a come usare il metodo visualizza, ereditato dalla classe Figura,
 per le dassi Rettangolo e Cerchio emergono delle complicazioni. Si consideri, per
 esempio, la classe Rettangolo che è una classe derivata da Figura e pertanto eredita
 il suo metodo visualizza che usa i metodi area e perimetro che sono implementati in

 152

 modo diverso per ogni tipo di figura. Il metodo visualizza è definito nella classe
 Figura mentre si vorrebbe che la sua esecuzione invocasse i metodi area e
 perimetro specifici di ogni figura. Se r è un'istanza della classe Rettangolo, si vuole
 che la seguente istruzione:

 r. visualizza()

 invochi i metodi area e perimetro della classe Rettangolo e non quella di Figura.

 In Java tutto questo accade in modo automatico. Quando viene eseguito il metodo
 visualizza della classe Rettangolo, vengono invocati i corrispondenti metodi area e
 perimetro definiti nella classe Rettangolo perché Java utilizza un meccanismo
 conosciuto come binding dinamico (o dymmic binding o late binding).

 BINDING DINAMICO: la risoluzione della chiamata ad un metodo ridefinito avviene
 dinamicamente in base al tipo dinamico dell'oggetto riferito e non in base al tipo
 statico della variabile referente

 Figura r = new Rettangolo(2,3);

 il tipo della variabile referente (Figura) è diverso (anche se compatibile) dal tipo
 dell'oggetto riferito (Rettangolo) il tipo dell'oggetto riferito si determina solo a run-time
 il metodo chiamato è il metodo area() di Rettangolo non il metodo area() di Figura.

 class Main {

 public static void main (String[] args) {

 Figura r = new Rettangolo(2 , 3);

 Figura c = new Cerchio(3);

 Figura f= new Figura();

 System.out.println("------Rettangolo-------");

 r.visualizza();

 System.out.println("-----Cerchio-------");

 c.visualizza();

 System.out.println("------Figura-------");

 f.visualizza();

 }

 153

 }

 Codice

 Metodi per cui il binding dinamico non viene applicato

 Java non utilizza il binding dinamico per:

 1. i metodi privati
 2. i metodi final
 3. i metodi statici

 Nel caso dei metodi privati e final, l'assenza di binding dinamico non rappresenta un
 limite, perché comunque non sarebbe di alcuna utilità. Al contrario, l'assenza di
 binding dinamico per i metodi statici può essere significativa quando il metodo
 statico viene invocato utilizzando un oggetto chiamante invece che mediante il nome
 della classe.

 Quando Java, non utilizza il binding dinamico, utilizza il binding statico. Nel caso del
 binding statico, la decisione su quale definizione di metodo debba essere eseguita
 viene presa durante la compilazione sulla base del tipo dell'oggetto chiamante.

 Il Listato che segue mostra l'effetto del binding statico nel caso in cui venga invocato
 un metodo statico con un oggetto chiamante.

 public class Figura {

 public void visualizza () {

 System.out.println("Area " + area());

 System.out.println("Perimetro" + perimetro());

 }

 public double area () {

 // Implementazione vuota; in Figura non si sa come implementarlo

 // poiché dipende dalla specifica figura

 return 0 ;

 }

 public double perimetro (){

 // Implementazione vuota; in Figura non si sa come implementarlo

 154

https://replit.com/@RolandoSucco/Binding-dinamico

 // poiché dipende dalla specifica figura

 return 0 ;

 }

 public static void disegna (){

 System.out.println("disegno figura");

 }

 }

 Si noti che il metodo statico disegna() , definito nella classe Figura, è stato ridefinito
 nella classe Rettangolo.

 class Rettangolo extends Figura {

 private double altezza;

 private double base;

 Rettangolo(double base, double altezza){

 this .base=base;

 this .altezza=altezza;

 }

 public double area (){

 return base*altezza;

 }

 public double perimetro (){

 return 2 *base+ 2 *altezza;

 }

 public static void disegna (){

 System.out.println("disegno Rettangolo");

 }

 }

 Nonostante questo, quando si ha un riferimento a un oggetto di tipo Rettangolo da
 una variabile di tipo Figura, il metodo disegna () che viene eseguito è quello definito
 nella classe Figura e non quello definito nella classe Rettangolo.

 Questo perché un metodo statico viene normalmente invocato utilizzando un nome
 di classe e non un oggetto chiamante. Purtroppo non è sempre così e alcune volte
 un metodo statico può avere un oggetto chiamante nascosto. Se si invoca un
 metodo statico dalla definizione di un metodo non statico senza utilizzare né un
 nome di classe, né un oggetto chiamante, l'oggetto chiamante implicitamente
 utilizzato è this.

 155

 Codice

 Classi astratte

 La classe Forma è stata progettata come una classe base per altre classi, come la
 classe Rettangolo, e se non c'è alcuna necessità d'istanziare oggetti di tipo Forma, i
 due metodi area() e perimetro(), non verranno mai utilizzato, poiché restituiscono
 sempre zero. Infatti non si può calcolare l'area o il perimetro di una Forma
 geometrica senza sapere di che forma si tratta.

 Questi metodi sono stati definito all'interno della classe Forma esclusivamente per
 sfruttare il polimorfismo.

 Tuttavia, invece di fornire una definizione "inventata" di un metodo che si pensa di
 ridefinire in una classe derivata, si può dichiarare il metodo astratto:

 public abstract void area ();
 La sintassi per definire un metodo astratto prevede di far precedere all'intestazione
 del metodo la parola chiave abstract, di porre un punto e virgola alla fine
 dell'intestazione e di omettere il corpo del metodo.

 Definire un metodo astratto significa posticipare la sua definizione al momento in cui
 si saprà effettivamente come definirla. Nel caso specifico, è come dire che: "ogni
 figura avrà un metodo area(), ma in questa classe non si sa come implementarlo".

 Un metodo astratto deve essere ridefinito da ogni classe derivata dalla classe base
 astratta. Chiaramente, questo vale se la classe derivata sa come definirlo.
 Nell'ipotesi che la classe derivata sappia definirlo, includere un metodo astratto in
 una classe base è un modo per obbligare la classe derivata a definire un particolare
 metodo.

 Java richiede che se una classe ha almeno un metodo astratto, la classe deve
 essere dichiarata astratta. Si fa ciò includendo la parola chiave abstract
 nell'intestazione della definizione della classe:

 public abstract class Forma {

 156

https://replit.com/@RolandoSucco/Binding-statico

 Una classe definita in questo modo è detta classe astratta. Le classi astratte non
 possono essere istanziate direttamente, ovvero non si possono creare i relativi
 oggetti. Nelle classi astratte si definiscono metodi tutti o in parte anch'essi astratti.

 Sintassi:

 abstract class ClassName {

 public abstract void abstractMethod ();

 }
 Per definire classi e metodi astratti si usa la keyword abstract. Una sottoclasse di
 una classe astratta deve obbligatoriamente implementarne gli eventuali metodi
 astratti e, altrimenti essa stessa deve divenire classe astratta. Una classe abstract
 può avere anche variabili d'istanza e metodi non abstract.

 public abstract class Figura {

 public void visualizza () {

 System.out.println("Area " + area());

 System.out.println("Perimetro" + perimetro());

 }

 public abstract double area ();

 public abstract double perimetro ();

 }

 Codice

 Nella Figura mostriamo un altro esempio di ereditarietà con una classe astratta
 riferendosi a un'azienda dove si trovano impiegate diverse figure professionali.

 157

https://replit.com/@RolandoSucco/Astratta

 La classe astratta Dipendente avrà un metodo astratto per il calcolo dello stipendio,
 nelle tre sottoclassi che da essa deriveranno (Ingegnere, Tecnico e Operaio) si dovrà
 definire in modo specializzato tale metodo.

 public abstract class Dipendente

 {

 private String nome;

 private String cognome;

 public Dipendente (String nome, String cognome)

 {

 this .nome = nome;

 this .cognome = cognome;

 }

 protected String getNome () { return nome; }

 protected String getCognome () { return cognome; }

 public String toString ()

 {

 return cognome + " " + nome;

 }

 public abstract int calcoloStipendio (); // metodo astratto

 }

 Esempio:

 • un Ingegnere, avrà uno stipendio mensile che sarà dato da un importo fisso più una
 percentuale,

 • un Tecnico avrà uno stipendio mensile dato da un importo fisso più un quantum in
 base ai pezzi lavorati

 • un Operaio avrà uno stipendio mensile dato da un importo a ore più una
 percentuale su un numero variabile di pezzi lavorati.

 public class Ingegnere extends Dipendente {

 private int percentage;

 private int fisso;

 public Ingegnere (String n, String c, int p, int f) {

 super (n, c);

 setPercentage(p);

 158

 setFisso(f);

 }

 public void setFisso (int f) // imposto il fisso come paga

 {

 fisso = f > 0 ? f : 0 ;

 }

 public void setPercentage (int p) // imposto la percentuale

 {

 percentage = p > 0 ? p : 0 ;

 }

 @Override

 public int calcoloStipendio () // calcolo specializzato del

 guadagno

 {

 return fisso + (fisso * percentage / 100);

 }

 @Override

 public String toString () {

 return super .toString() + " guadagna € " ;
 }

 }

 Il Listato evidenzia come la classe ingegnere sia una classe specializzata della
 classe base astratta Dipendente: infatti esegue l'override del metodo
 calcoloStipendio ereditato per il calcolo della paga.

 Inoltre, poiché un Ingegnere è anche un Dipendente dal suo costruttore invochiamo
 il costruttore di Dipendente per inizializzare nome e cognome. In modo analogo
 possiamo creare le altre due classi.

 class Main {

 public static void main (String args[]) {

 Dipendente e;

 Ingegnere eng = new Ingegnere("Mario" , "Rossi" , 10 , 1000);

 Tecnico tec = new Tecnico("Paolo" , "Canali" , 800 , 3);

 Operaio lab = new Operaio("Aldo" , "Falco" , 2 , 44);

 e = eng; // ora è un Engineer

 159

 System.out.print(e.toString() + e.calcoloStipendio());

 e = tec; // ora è un Technician

 System.out.print(" | " + e.toString() +

 e.calcoloStipendio());

 e = lab; // ora è un Laborer

 System.out.println(" | " + e.toString() +

 e.calcoloStipendio());

 }

 }

 Output:

 Rossi Mario guadagna € 1100 | Canali Paolo guadagna € 815 | Falco
 Aldo guadagna € 380

 Dal Listato vediamo che nel metodo main si crea il riferimento e del tipo della classe
 astratta Dipendente e poi tanti riferimenti (eng, tec e lab) quante sono le classi da
 essa derivate. Successivamente assegniamo in sequenza tali riferimenti al
 riferimento e di tipoDipendente e da esso invochiamo, il metodo calcoloStipendio per
 visualizzare lo stipendio dell'oggetto che sta in quel momento referenziando.

 Quindi una classe astratta si utilizza principalmente per definire entità astratte (o di
 alto livello) da cui è possibile definire altre classi che hanno una relazione gerarchica
 con la classe astratta.

 Codice

 Interfacce

 Un'interfaccia è una sorta di classe astratta che dichiara, principalmente, dei metodi
 (è presente solamente la loro Firma) che le classi che la implementano devono poi
 definire. Pertanto, essa contiene una serie di metodi astratti (sono implicitamente
 abstract).

 Sintassi:

 modificatore-di-accesso interface MyInterface (
 Sintassi per l'implementazione di un'interfaccia:

 public class MyClass implements MyInterface{

 160

https://repl.it/@RolandoSucco/Classi-Astratte

 public interface FormaGeometrica {

 doble calcolaPerimetro ();

 double calcolaArea ();

 voi disegnaForma ();

 }

 Un interface può anche contenere dei dati membro, che il compilatore tratta
 automaticamente come:

 public final static
 ossia come costanti di classe, per questo motivo bisogna inizializzare questi
 parametri.

 Consideriamo l'interface FiguraGeometrica e una classe Cerchio che la implementi

 interface FiguraGeometrica {

 double PIGRECO= 3.14 ;

 public double calcolaArea ();

 }

 class Cerchio implements FiguraGeometrica {

 private double raggio;

 Cerchio(double raggio){

 this .raggio=raggio;

 }

 public double calcolaArea (){

 return FiguraGeometrica.PIGRECO*raggio*raggio;

 }

 }

 Nell'uso delle interfacce valgono le seguenti regole:

 o Possiamo dichiarare una variabile indicando come tipo un'interfaccia

 o Non possiamo istanziare un'interfaccia

 Vediamo il codice che testa la classe cerchio:

 161

 ● A una variabile di tipo interfaccia possiamo assegnare solo istanze di classi
 che implementano l'interfaccia

 ● Su di una variabile di tipo interfaccia possiamo invocare solo metodi dichiarati
 nell'interfaccia.

 public class Main {

 public static void main (String[] args) {

 FiguraGeometrica a;

 Cerchio b= new Cerchio(2);

 a=b;

 System.out.println("l'area del cerchio di raggio 2 è " +

 a.calcolaArea());

 FiguraGeometrica c = new Cerchio(3);

 a=b;

 System.out.print("l'area del cerchio di raggio 3 è " +

 c.calcolaArea());

 }

 }

 Codice

 Metodi statici (Java 8)

 Con Java 8 è possibile definire all'interno delle interfacce anche metodi statici.
 Quindi è possibile scrivere interfacce nel seguente modo:

 public interface StaticMethodInterface {

 static void metodostatico () {

 System.out.println ("Metodo Statico Chiamato!") ;

 }

 e chiamare metodi statici direttamente dalle interfacce:

 public class TestStaticMethodInterface {

 public static void main (String args[])

 StaticMethodInterface. metodoStatico ();

 162

https://replit.com/@RolandoSucco/Interface

 }

 }

 Un'interfaccia come la precedente non ha bisogno di essere implementata, infatti i
 metodi statici di un'interfaccia non vengono ereditati. Interfacce di questo tipo
 servono semplicemente per definire metodi statici e pubblici. Ovvero definiscono
 funzioni.

 Metodi di default e interfacce funzionali (Java 8)

 Altra novità di Java 8 è la possibilità di dichiarare metodi concreti all'interno delle
 interfacce. Si parla di metodi di default perché vengono dichiarati usando come
 modificatore la parola chiave default . Per esempio consideriamo il seguente codice:

 public interface Solista {

 default void eseguiAssolo () {

 //Scala maggiore in DO

 System.out.println ("DO RE MI FA SOL LA SI");

 }

 In questo modo possiamo ereditare questo metodo in un'eventuale sottoclasse
 senza dover riscrivere il metodo (che non è astratto). La seguente classe compila
 senza problemi:

 public class Musicista implements Solista {}

 Il metodo esequiAssolo() sarà sempre possibile riscriverlo all'occorrenza. Avere però
 un'implementazione di default può essere in generale molto comodo.

 È possibile scrivere più di un metodo di default in un'interfaccia, e questi possono
 convivere con metodi astratti e metodi statici. Il nome "interfaccia" in un certo senso
 ha perso di significato, anche se è sempre possibile usare le interfacce dichiarando
 solo metodi astratti. In particolare prendono il nome d'interfacce funzionali le
 interfacce che contengono un unico metodo astratto.

 Quando si utilizza un'interfaccia?

 Un'interfaccia si utilizza principalmente per definire metodi comuni a più tipi, i quali
 non hanno alcuna relazione gerarchica tra loro.

 163

 Esempio:

 ● le classi Prodotto e FormaGeometrica hanno bisogno di un metodo per la
 conversione degli attributi in una stringa XML

 ● l'interfaccia ConvertiDati definisce il metodo generaXML(), senza
 implementarlo

 ● le classi Prodotto e FormaGeometrica, possono implementare l'interfaccia
 Converti Dati attraverso l'utilizzo della chiave riservata implements.

 ● nelle classi Prodotto e formaGeometrica è necessario implementare il metodo
 generaXML() definito nell'interfaccia ConvertiDati.

 ● il contenuto del metodo generaXML() e I'XML generato, cambia in base alla
 classe che lo implementa

 public class Prodotto implements ConvertiDati {

 @Override

 public String generaXML () { /* implementazione del

 metodo*/

 }

 }

 Interfacce e classi astratte, differenze

 Le interfacce e le classi astratte sono elementi molto simili, e la loro similitudine è
 aumentata in Java8 che ha introdotto la possibilità di definire una implementazione,
 detta default, dei metodi dichiarati nelle interfacce.

 Entrambe non possono essere istanziate e possono dichiarare al loro interno metodi
 con o senza implementazione. Tuttavia ci sono delle caratteristiche che le

 164

 differenziano e che fanno la differenza, come per esempio le classi astratte possono
 dichiarare campi che sono non static e final, e dichiarare metodi public, protected e
 private. Invece con le interfacce tutti i campi sono automaticamente public, static e
 final e tutti i metodi che vengono dichiarati o definiti sono public. Un'altra importante
 caratteristica che le differenzia e che spesso è punto focale nella scelta di uno o
 dell'altro approccio, è il fatto che si può estendere una sola classe astratta, mentre si
 possono implementare tutte le interfacce che si vuole.

 Quando utilizzare l'interfaccia e quando la classe astratta?

 In base a quanto detto, cosa è meglio utilizzare? E in quali circostanze? Si usa una
 classe astratta per condividere codice fra più classi, se più classi hanno in comune
 metodi e campi o se si vogliono dichiarare metodi comuni che non siano
 necessariamente campi static e final. Si decide di utilizzare un'interfaccia se ci si
 trova nella situazione in cui alcune classi (assolutamente non legate fra di loro) si
 trovano a condividere i metodi di un'interfaccia, se si vuole specificare il
 comportamento di un certo tipo di dato (ma non implementarne il comportamento) o
 se si vuole avere la possibilità di sfruttare la "multiple inheritance".

 Enum in Java
 Le Enum definiscono un tipo di dati che può assumere un insieme limitato e fissato
 di valori. Ad esempio, un tipo di dati che rappresenta un giorno della settimana può
 assumere solo uno di 7 possibili valori ognuno con un determinato giorno. La
 sintassi per definire un enumerazione:

 165

 public enum Giorno {

 LUNEDI,

 MARTEDI,

 MERCOLEDI,

 GIOVEDI,

 VENERDI,

 SABATO,

 DOMENICA // opzionalmente può terminare con ";"

 }

 Possiamo definire una variabile di tipo Giorno come

 Giorno giornoDellaSettimana;
 Abbiamo una variabile che potrà contenere solamente un valore appartenente al set
 specificato nella definizione dell'enum Giorno e contemporaneamente avremo a
 disposizione anche i nomi simbolici (le costanti di prima) da usare nella scrittura del
 programma:

 giornoDellaSttimana= Giorno. LUNEDI ;
 A ogni costante della classe viene assegnato in automatico un valore numerico in
 base all'ordine in cui sono stati scritti (nel nostro caso, a LUNEDI sarà assegnato
 zero, a MARTEDI uno, a DOMENICA sei).

 Questo valore indica la posizione occupata all'interno della classe.

 Tecnicamente parlando in Java una enum è una classe come le altre ma che
 "implicitamente" estende sempre la classe java.lang.Enum. Esistono metodi per
 passare da indice numerico a valore enumerato, e viceversa.

 Per passare da valore enumerato a indice, si usa il seguente metodo della classe
 Enum

 public int ordinal()
 restituisce un intero che rappresenta l'indice dell' enum.

 166

 Per l'operazione inversa, si usa il seguente metodo statico, che ogni classe
 enumerata possiede automaticamente (non appartiene alla classe Enum)

 public static E[] values ()
 restituisce un array contenente tutti i possibili valori di E.

 Quindi, per ottenere il valore di posto i-esimo, è sufficiente accedere all'elemento
 i-esimo dell'array restituito da values.

 valueOf (str)
 restituisce la costante di enumerazione i cui valori corrispondono alla stringa passata
 in str.

 Codice

 Il fatto che le enum siano a tutti gli effetti classi, apre la possibilità di aggiungere
 dentro di essi metodi, attributi e costruttori. Esaminiamo un po di sintassi:

 1. I costruttori devono essere privati e non possono essere chiamati
 esplicitamente, sono unicamente a disposizione del compilatore.

 2. La lista dei valori nel caso in cui siano definiti dei costruttori non deve essere
 considerata, come abbiamo fatto fino a ora, come una lista di etichette ma
 come una forma compatta per istruire il compilatore a costruire determinate
 istanze della classe e assegnare loro un nome simbolico. Non ci sono
 restrizioni circa i metodi e gli attributi che possono essere inclusi nel corpo di
 un enum.

 public enum Giorno {

 LUNEDI(1),

 MARTEDI(2),

 MERCOLEDI(3),

 GIOVEDI(4),

 VENERDI(5),

 SABATO(6),

 DOMENICA(7);

 167

https://replit.com/@RolandoSucco/Enumerazion

 private int valore;

 private Giorno (int valore){

 this .valore=valore;

 }

 public int getValore (){

 return valore;

 }

 }

 Giorno giornoDellaSttimana=Giorno.LUNEDI;
 Quando definiamo la variabile tutti i costruttori vengono invocati con il valore
 predefinito. E quindi possiamo accedere a questo valore tramite il metodo:

 getValore();
 Lo stesso risultato si ottiene:

 Giorno.LUNEDI.getValore();
 Codice

 168

https://replit.com/@RolandoSucco/Enumerazioni-1

 Eccezioni
 Un'eccezione è una situazione
 imprevista (errore) che non viene rilevata
 durante la fase di compilazione, ma si
 presenta durante l'esecuzione di
 un'applicazione. Un errore di questo tipo
 impedisce la normale esecuzione del
 programma e dev'essere gestita,
 altrimenti il programma s'interrompe.

 In Java è possibile gestire le eccezioni utilizzano all'interno del codice delle parole
 chiavi:

 1. try

 2. catch

 3. finally

 4. throw

 5 throws

 Sarà anche possibile creare eccezioni personalizzate e decidere non solo come,
 ma anche in quale parte del codice gestirle, grazie a un meccanismo di
 propagazione molto potente. Questo concetto è implementato nella libreria Java
 mediante la classe Exception (sotto classe di Throwable) e le sue sotto classi.

 Exception: Rappresenta la
 superclasse di tutte quelle
 eccezioni gestibili ad esempio:

 L'eccezione che si può
 verificare quando in un
 programma si esegue una
 divisione per zero. Tale
 operazione non è eseguibile.

 Error: Rappresenta una situazione imprevista non dipendente da un errore
 commesso dallo sviluppatore. A differenza delle eccezioni, gli errori non sono

 169

 gestibili. Un esempio di errore che potrebbe causare un programma è quello relativo
 alla terminazione delle risorse di memoria. Questa condizione non è gestibile.

 Un'ulteriore categorizzazione delle eccezioni è data dalla divisione delle eccezioni in:

 1. unchecked: Ci si riferisce alle RuntimeException (e le sue sottoclassi)
 Eccezioni non controllate (unchecked) Sono dovute al codice scritto nel nostro
 programma e in linea teorica potrebbero essere evitate. Rappresentano i
 «famosi» bug software. Queste eccezioni non vengono verificate dal
 compilatore e possono accadere solo durante l'esecuzione del programma.

 2. checked exception: Tutte le altre. Sono dovute a eventi che si verificano
 esternamente al software (esempio l'accesso a un file inesistente). Si
 chiamano controllate in quanto il compilatore verifica che vengano indicate e
 intercettate nel software. Se non vengono indicate, si hanno degli errori di
 compilazione. Se si utilizza un metodo che lancia una checked exception
 senza gestirla da qualche parte, la compilazione non andrà a buon fine. Da qui
 il termine checked exception (in italiano "eccezioni controllate".

 Il fatto che sia la classe Exception sia la classe Error estendono una classe che si
 chiama "lanciabile" (Throwable) è dovuto al meccanismo con cui la JVM reagisce
 quando s'imbatte in una eccezione-errore.

 Se un blocco di codice genera un'eccezione durante il runtime, la JVM istanzia un
 oggetto dalla classe eccezione relativa al problema e lancia l'eccezione appena
 istanziata (tramite la parola chiave throw). Se il nostro codice non cattura (tramite la
 parola chiave catch) l'eccezione, il gestore automatico della JVM interrompe il
 programma generando in output informazioni dettagliate su ciò che è accaduto.

 170

 Supponiamo che durante l'esecuzione un programma provi a eseguire una divisione
 per zero tra interi. La JVM istanzierà un oggetto di tipo ArithmeticException
 (inizializzandolo opportunamente) e lo lancerà. In pratica è come se la JVM
 eseguisse le seguenti righe di codice:

 ArithmeticException ex = new ArithmeticException();

 throw exc;

 Tutto avviene dietro le quinte e sarà trasparente allo sviluppatore.

 Ci sono 3 modi di gestire l'eccezioni:

 Se un'eccezione è ignorata da un programma, questo terminerà producendo un
 messaggio opportuno con l'indicazione delle chiamate di metodi che hanno portato
 all'eccezione dell'errore della linea in cui l'eccezione si è verificata.

 Esempio: Divisione per zero EVITARE!!!!!

 public class Main

 {

 public static void main (String args[])

 {

 int x = 3 ;

 int y = 0 ;

 int z = x/y;

 System.out.println("z=" + z);

 }

 }

 171

 Main Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Main.main(Main.java: 7)

 Gestire le Eccezioni (processare l'eccezione quando accade)

 Nell'esempio precedente l'eccezione genera un messaggio molto esplicativo dal
 momento che sono stati evidenziati:

 1. Il tipo di eccezione (java.lang.ArithmeticException);

 2. Un messaggio descrittivo (/ by zero);

 3. Il metodo in cui è stata lanciata l'eccezione (Main.main):

 4. Il file in cui è stata lanciata l'eccezione (Main.java):

 5. La riga in cui è stata lanciata l'eccezione (:7).

 L'unico problema è che il programma è terminato prematuramente. Utilizzando le
 parole chiave try e catch sarà possibile gestire l'eccezione in maniera
 personalizzata:

 172

 Racchiudiamo il codice da controllare dentro un blocco che inizia con la parola
 chiave try.

 public class Main

 {

 public static void main (String args[])

 {

 try

 {

 int x = 3 ;

 int y = 0 ;

 int z = x/y;

 173

 System.out.println("z=" + z);

 }

 catch (ArithmeticException ex)

 {

 System.out.println("Si e' verificata un'eccezione -> siamo

 nel blocco catch");

 //ex.printStackTrace();

 }

 System.out.println("siamo fuori dal blocco catch");

 }

 }

 Se durante l'esecuzione del programma tutto va bene i blocchi catch vengono saltati
 e il programma prosegue normalmente.

 Se nel blocco try viene sollevata un'eccezione (nell'esempio ArithmeticException)
 verrà catturata nel blocco catch, e viene eseguito il codice contenuto nel blocco.

 Si possono inserire una serie di blocchi catch in modo da gestire una serie di
 eccezioni.

 Il blocco catch deve dichiarare un parametro (come se fosse un metodo), il Data
 Type di questo parametro deve essere una classe derivata dalla classe throwable.

 Per reperire informazioni sull'eccezione sollevata si usa il metodo printStackTrace()
 che visualizza messaggi informativi identici a quelli visualizzati quando l'eccezione
 non è gestita, ma senza interrompere il programma. È fondamentale che si dichiari,
 tramite il blocco catch, un'eccezione del tipo giusto.

 Codice

 Come per i metodi, anche per i blocchi catch i parametri possono essere polimorfi.
 Per esempio, il seguente frammento di codice:

 int a = 10 ;

 int b = 0 ;

 try {

 int c= a/b:

 System.out.printin(c);

 174

https://replit.com/@RolandoSucco/EsempioEccezioni

 } catch (Exception ex){

 ex.printStackTrace();

 }

 contiene un blocco catch che cattura qualsiasi tipo di eccezione, essendo Exception
 la superclasse da cui discende ogni altra eccezione. Il reference ex è in
 quest'esempio un parametro polimorfo. È possibile far seguire a un blocco try più
 blocchi catch, come nel seguente esempio:

 int a = 10 ;

 int b= 0 ;

 try {

 int c= a/b;

 System.out.println(c);

 } catch (ArithmeticException ex) {

 System.out.printin("Divisione per zero...");

 } catch (NullPointerException ex){

 System.out.println("Reference nullo...");

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 In questo modo il programma risulta più robusto e gestisce diversi tipi di eccezioni.
 Nel peggiore dei casi (ovvero se il blocco try lanciasse un'eccezione non prevista)
 l'ultimo blocco catch gestisce il problema.

 finally

 È possibile far seguire un blocco try, oltre che da blocchi catch, da un altro blocco
 definito dalla keyword finally. Ciò che è definito in un blocco finally viene sempre
 eseguito:

 ● Sia se viene lanciata un'eccezione.
 ● Sia se non viene lanciata nessuna eccezione.

 Per esempio, è possibile utilizzare un blocco finally quando esistono operazioni
 critiche che devono essere eseguite in qualsiasi caso.

 175

 public class Eccezione {

 public static void main (String args[]) {

 int a = 10 ;

 int b = 0 ;

 try {

 int c = a/b;

 System.out.println(c);

 } catch (ArithmeticException exc) {

 System.out.println("Divisione per zero...");

 } catch (Exception exc){

 exc.printstackTrace);

 } finally {

 System.out.println("Operazione terminata");

 }

 }

 }

 L'output del programma è: Divisione per zero... Operazione terminata.

 Se invece b è diversa da zero(b= 2) :

 Output: Operazione terminata.

 È possibile anche far seguire direttamente a un blocco try un blocco finally, che viene
 eseguito sia in presenza che in assenza di un'eccezione. Comunque, se si verifica

 176

 un'eccezione, non essendo gestita con un blocco catch, il programma terminerebbe
 in modo anomalo.

 Propagazione: l'istruzione throws

 Il costrutto try - catch permette di gestire i problemi localmente, nel punto preciso in
 cui sono stati generati.

 Tuttavia, in un'applicazione stratificata, può essere preferibile fare in modo che le
 classi periferiche lascino rimbalzare l'eccezione verso gli oggetti chiamanti, in modo
 da delegare la gestione dell'eccezione alla classe che possiede la conoscenza più
 dettagliata del sistema.

 L'istruzione throws, se è presente nella firma di un metodo, consente di propagare
 l'eccezione al metodo chiamante, in modo da delegarne a esso la gestione:

 public void divisione (int a, int b) throws

 ArithmeticException {

 int c=a/b:

 }

 La chiamata al metodo divisione, definito con clausola throws. dovrà essere posta
 all'interno di un blocco try - catch.

 public void aritmetica (int a, int b){

 try {

 int c=divisione (a,b);

 } catch (ArithmeticException e){

 //codice eccezione;

 }

 }

 177

 public int divisione (int a, int b) throws ArithmeticException {

 int c=a/b;

 return c;

 }

 In alternativa, il metodo chiamante potrà a sua volta delegare la gestione
 dell'eccezione mediante una throws.

 public void aritmetica (int a, int b) throws ArithmeticException{

 int c=divisione (a,b);

 }

 public int divisione (int a, int b) throws ArithmeticException {

 int c=a/b;

 return c;

 }

 Codice

 Lancio di eccezioni: il costrutto throw

 Finora si è visto come gestire metodi che possono generare eccezioni, o in
 alternativa come delegare la gestione delle stesse a un metodo chiamante. Ma cosa
 si deve fare se si desidera generare in prima istanza un'eccezione?

 Se vogliamo lanciare un'eccezione durante l'esecuzione del programma possiamo
 utilizzare la parola chiave throw .

 L'istruzione throw richiede come argomento un oggetto Throwable o una sua
 sottoclasse. È possibile utilizzare throw all'interno di un blocco catch, qualora si
 desideri ottenere sia la gestione locale di un'eccezione sia il suo inoltro all'oggetto
 chiamante.

 178

https://replit.com/@RolandoSucco/uso-di-throws

 public class Main {

 public static void main (String[] args) {

 int a= 10 ;

 int b= 0 ;

 try {

 int c= divisione(a,b);

 System.out.println(c);

 } catch (Exception e){

 System.out.println(e.getMessage());

 } finally {

 System.out.println("Programma terminato");

 }

 }

 public static int divisione (int a, int b) throws Exception{

 int c;

 if (b== 0)

 throw new Exception("il denominatore deve essere diverso da zero");

 else

 c=a/b;

 return c;

 }

 }

 Codice

 Eccezioni definite dall'utente

 Nonostante l'enorme varietà di eccezioni già presenti in Java, il programmatore può
 facilmente crearne di proprie, qualora desideri segnalare condizioni di eccezione
 tipiche di un proprio programma. Per creare una nuova eccezione è sufficiente
 dichiarare una sottoclasse di Exception (o di una qualsiasi altra eccezione esistente)
 e ridefinire uno o più dei seguenti

 costruttori:

 ● Exception(): crea un'eccezione.
 ● Exception(String message): crea un'eccezione specificando un messaggio

 diagnostico.
 ● Exception(Throwable cause) : crea un'eccezione specificando la causa.
 ● Exception(String message, Throwable cause): crea un'eccezione

 specificando un messaggio diagnostico e una causa.

 179

https://replit.com/@RolandoSucco/uso-di-throw

 Tuttavia la JVM non può lanciare automaticamente la nostra MiaException, la JVM,
 infatti, sa quando lanciare una ArithmeticException ma non sa quando lanciare una
 MiaException. In tal caso sarà compito dello sviluppatore lanciare l'eccezione
 usando la parola chiave throw.

 Codice

 180

https://replit.com/@RolandoSucco/Eccezioni-personalizzate

 Stringhe

 Tipo di dati String

 Una stringa è una sequenza immutabile di caratteri . I caratteri sono rappresentati
 in memoria usando la codifica UFT-16 e i simboli Unicode . La codifica prevede che
 un singolo carattere occupi 16 bit. Sono esempi di stringhe:

 ● una frase
 ● il codice fiscale
 ● un numero di telefono

 Una stringa non è un array di caratteri ma un oggetto definito nella classe;

 java.lang.String
 Per dichiarare e assegnare una stringa si possono usare i metodi:

 String Literals

 String txt= "Ciao Mondo";
 Usando le virgolette doppie e non gli apici singoli che rappresentano un singolo
 caratteri.

 Oppure si possono usare i costruttori della classe String():

 String txt= new String();
 Stringa null.

 String txt= new String("Ciao Mondo");
 Crea una stringa uguale a quella passata come parametro;

 String txt= new String(char[] caratteri);
 181

 Crea una stringa da un array di caratteri,

 String txt= new String(char[] c, int offset,int count);
 Crea una stringa composta da un sottoinsieme di caratteri contenuti nell'array c. Tale
 sottoinsieme è costruito fornendo l'indice di partenza inclusivo e il numero di
 caratteri.

 Per inserire caratteri speciali all’interno di una stringa si fa ricorso al carattere di
 escaping:

 \(backslash)
 Ad esempio, per inserire un ritorno a capo si utilizza la sequenza:

 \n
 Questo meccanismo consente di inserire lo stesso delimitatore di stringa all’interno
 della stringa:

 182

 La classe String è immutabile , cioè lo stato di un'istanza di quella classe non può
 essere modificato dopo che è stata creata. Per comprendere questo concetto
 vediamo come le stringhe vengono salvate in memoria.

 Se noi creiamo più istanze di una determinata classe, ognuna contiene un reference
 a una determinata area di memoria indipendentemente dal contenuto.

 Libro l1= new Libro("java 10");

 Libro l2= new Libro("java 10");

 Quando abbiamo a che fare con le stringhe java gestisce un'area di memoria
 particolare (String Pool) che contiene i valori delle stringhe create. Se istanziamo
 due oggetti string che contengono lo stesso valore questi puntano alla stessa area di
 memoria.

 String s1= new String("java 10");

 String s2= new String("java 10");

 183

 La classe String non è ereditabile:

 184

 Essendo String una classe possiede dei metodi che permettono di manipolarla:

 lista completa dei metodi

 Lunghezza della stringa

 Il metodo:

 length() restituisce la lunghezza di una stringa:

 String txt="ciao mondo";

 int i=txt.length();

 a i viene assegnato il valore 10

 Estrazione di caratteri da una stringa

 charAt(int posizione):
 Restituisce il carattere della posizione specificata se non viene trovato alcun
 carattere, restituisce una stringa vuota.

 String str="Ciao modo"
 185

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

 st r.charAt(5); restituisce il carattere 'M'

 codePointAt(int index)
 Restituisce il codice Unicode in corrispondenza dell'indice specificato.

 String str="Ciao modo"
 st r.codePointAt(5);

 restituisce 77

 Ricerca di una stringa

 string. indexOf(int ch)
 - restituisce la posizione della prima occorrenza del carattere ch all'interno
 dell'oggetto stringa (restituisce -1 se non trovato);

 string.indexOf(int ch, int start)
 Parametri:

 ● ch: richiesto carattere da cercare
 ● start: indice di partenza

 string.indexOf(String s)
 Restituisce la prima occorrenza della sottostringa s

 string.indexOf(String s, int start)

 186

 Restituisce la prima occorrenza della sottostringa s a partire da start

 string. lastIndexOf(String s)
 - restituisce la posizione dell'ultima occorrenza della sottostringa s all'interno
 dell'oggetto stringa (restituisce -1 se non trovato).:

 string.lastIndexOf(String s, int start)
 Parametri:

 ● s: richiesto stringa da cercare
 ● start: indice di partenza contando all'indietro

 string. lastIndexOf(int ch)
 - restituisce la posizione dell'ultima occorrenza di uno specifico valore all'interno
 dell'oggetto stringa (restituisce -1 se non trovato).:

 string.lastIndexOf(int ch, int start)
 Parametri:

 ● ch: richiesto carattere da cercare
 ● start: indice di partenza contando

 Concatenazione

 La concatenazione consiste nell'unire più stringhe in un'unica stringa. La
 concatenazione si può effettuare in due modi:

 1. Utilizzando l'operatore +.
 2. Utilizzando il metodo concat.

 A una stringa è possibile concatenare anche numeri.
 187

 String str1 = " ciao ";

 String str2 = " mondo ";

 String str3 = str1.concat(" ", str2);

 str3= str3+" "+123;

 Trasformazione

 Si hanno a disposizione diversi metodi che consentono di effettuare trasformazioni
 delle stringhe. Ad es. Si può trasformare una stringa :

 ● In minuscolo toLowerCase() .
 ● In maiuscolo toUpperCase().
 ● Eliminare spazi iniziali e finali trim().

 String txt=" Programmare in java ";

 String s=txt.trim();

 String t=txt.toUpperCase();

 String w=txt.toLowerCase();

 Tutti i metodi non modificano la stringa di partenza ma creano una nuova stringa.
 Per modificare la stringa di partenza si deve riassegnare

 String txt=" Programmare in java ";

 txt=txt.trim();

 txt=txt.toUpperCase();

 Estrazione (sotto stringa) substring

 substring(int start):
 Restituisce la sottostringa che va dal carattere che si trova all'indice indicato in
 start fino alla fine della stringa.

 substring(int start, int end):

 188

 restituisce la sottostringa che va dal carattere che si trova all'indice indicato in start
 fino al carattere che si trova all'indice indicato in end-1 .

 Codice

 Confronto

 La classe String mette a disposizione due metodi per effettuare il confronto tra
 stringhe:

 equals(String s):
 effettua un confronto tra due stringhe e ritorna true se sono uguali, false altrimenti.

 Questo metodo è case sensitive (cioè "parola" e "Parola" sono diverse).

 equalsIgnoreCase(String s):
 effettua un confronto tra due stringhe e ritorna true se sono uguali, false altrimenti.
 Questo metodo non è case sensitive (cioè "parola" e "Parola" sono uguali).

 Esempio: equals

 String str1 = "Stringa di test";
 String str2 = "stringa di TEST";
 System.out.println(str1.equals(str2));
 Output: false

 Esempio: equalslenoreCase

 String str3 = "Stringa di test";
 String str4 = "stringa di TEST";
 System.out.println(str3.equalslgnoreCase(str4));
 Output: true

 189

https://www.jdoodle.com/embed/v0/ui8

 Sostituzione del contenuto in una stringa

 Il metodo replace () sostituisce tutte le occorrenze di un valore specificato con un
 altro valore in una stringa:

 stringa.replace(String searchvalue, String newvalue)
 Parametri

 ● searchvalue: Il valore da sostituire
 ● newvalue: Il nuovo valore

 Il metodo replace () non modifica la stringa su cui è chiamato. Restituisce una
 nuova stringa.

 Per impostazione predefinita, il metodo replace () è case sensitive.

 Per sostituire solo la prima occorrenza si utilizza il metodo:

 stringa.replaceFirst(String regex, String newvalue)
 Sostituisce la prima sottostringa di questa stringa che corrisponde all'espressione
 regolare data con la sostituzione data.

 public class Main {

 public static void main (String[] args) {

 String txt= "Ho un giubbotto blu e un maglione blu" ;

 System.out.print(txt.replaceFirst("blu" , "rosso"));

 }

 }

 Output:

 Ho un giubbotto rosso e un maglione blu

 Trasformare una stringa in un Array

 split() - divide una stringa sulla base di un separatore e restituisce un array;
 vediamo un esempio:

 190

 String miaStringa = "divido la stringa in base agli spazi vuoti!";

 String[] array=miaStringa.split(" "));

 Se il separatore è omesso, l'array restituito conterrà l'intera stringa nell'indice [0].

 Se il separatore è "", l'array restituito sarà un array di singoli caratteri:

 String text="ciao mondo";

 String[] array=text.split("");

 Output

 ['c', 'i', 'a', 'o', ' ', 'm', 'o', 'n', 'd', 'o']

 Metodi utili

 ● valueOf(valore): r estituisce il valore primitivo Nota: questo metodo viene
 solitamente chiamato automaticamente da JavaScript dietro le quinte e non
 esplicitamente nel codice.

 ● startsWith(String prefix) : metodo che ritorna true se la stringa inizia con il
 prefisso indicato, false altrimenti.

 ● endsWith(String suffix): metodo che ritorna true se la stringa finisce con il
 suffisso indicato, false altrimenti.

 Esempio:
 String str2 = "Stringa 2";

 boolean starts = str2.startsWith("Str"); // ritorna true

 boolean ends = str2.endsWith("Str"); // ritorna false

 int numString = String.valueOf(28);

 Il metodo:

 str1.compareTo(str2)
 restituisce un numero che indica se str1 viene prima, dopo, oppure è uguale a str2:

 191

 ● Restituisce numero negativo se str1 è ordinato prima di str2
 ● Restituisce 0 se le due stringhe sono uguali
 ● Restituisce 1 se str1 è ordinato dopo str2

 compareToIgnoreCase (String str)
 Confronta le stringhe ignorando maiuscole e minuscole.

 string.repeat(count)
 crea una nuova stringa ripetendo il valore di string count volte.

 192

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#compareToIgnoreCase(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

 Programmazione generica
 La programmazione generica è stata introdotta in Java a partire dalla versione 5, e
 permette di scrivere:

 ● classi,
 ● interfacce
 ● metodi

 in forma parametrica, generici, ovvero che compiono una medesima operazione su
 un insieme di tipi di dato differenti .

 L'utilizzo più massiccio dei tipi generici è sicuramente contestuale all'utilizzo delle
 collection.

 Se si vuole realizzare una classe (contenitore) per tipi diversi si può scrivere la
 classe nel seguente modo:

 public class Contenitore {

 private Object object;

 public void setObject (Object object) {

 this .object = object;

 }

 public Object getObject () {

 return object;

 }

 }

 Il parametro object può assumere come valore qualsiasi oggetto.

 La classe di Test:

 public class Test {

 public static void main (String[] args) {

 Contenitore a = new Contenitore();

 a.setObject("ciao mondo");

 System.out.println((String) a.getObject()); // cast da Object a String

 a.setObject(123);

 System.out.println((int) a.getObject()); // cast da Object a int

 }

 }

 193

 Output:

 Questa semplice classe non è facile da gestire. Infatti, una volta recuperato l'oggetto
 object mediante il metodo getObiect() si è obbligati a convertirlo per usarlo. Questa
 operazione è potenzialmente pericolosa, perché potrebbe anche recuperare un tipo
 diverso da quello che ci si aspetta.

 Nella classe Test inseriamo volontariamente un errore:

 public class Test { public static void main (String[] args)

 {

 Contenitore a = new Contenitore();

 a.setObject("ciao mondo");

 System.out.println((String) a.getObject()); // cast da

 Object a string

 a.setObject(123);

 System.out.println((int) a.getObject()); // cast da

 Object a int

 a.setObject(143);

 System.out.println((String) a.getObject()); // casting

 errato produce un errore

 }

 }

 In fase di compilazione non viene rilevato nessun problema, ma se la si esegue si ha
 un eccezione.

 ciao mondo

 123

 E xception in thread "main" java.lang.ClassCastException:
 java.lang.Integer cannot be cast to java.lang.String

 194

 at Test.main(Test.java:9)

 Generics e tipi parametro

 Per rendere il codice precedente più robusto la si può "renderla generica"
 aggiungendo alla definizione dei parametri usando le parentesi angolari che
 circondano gli identificatori dei tipi.

 Sintassi:

 class Nome <T1, T2... Tn> {
 }

 La classe contenitore diventa

 public class Contenitore < T >{

 private T object;

 public void setObject (T object) {

 this .object = object;

 }

 public T getObject () {

 return object;

 }

 }

 Si noti che ora al posto di Obiect c'è il tipo parametrico T , che non rappresenta un
 tipo esistente ma è un segnaposto per qualsiasi data Type. Questo verrà sostituito
 con un tipo reale nel momento in cui verrà istanziato un Contenitore.

 Una classe per il test.

 public class Main {

 public static void main (String[] args) {

 Contenitore<String> a = new Contenitore<String>();

 a.setObject("ciao mondo");

 System.out.println(a.getObject()); //senza cast

 195

 Contenitore<Integer> b = new Contenitore<Integer>();

 b.setObject(123);

 System.out.println(b.getObject());

 }

 }

 In questo modo è come se si sostituisce al parametro T prima la classe String e poi
 la classe Integer in tutta la definizione della classe, Quindi il metodo setObject()
 accetterà solo quella classe Se si passa un altro tipo si ottiene un errore in
 compilazione.

 public class Main {

 public static void main (String[] args) {

 Contenitore<Integer> b = new Contenitore<Integer>();

 b.setObject(123);

 System.out.println(b.getObject());

 String valore=b.getObject());

 }

 }

 Errore ottenuto in compilazione.

 Per convenzione quando si dichiara un tipo parametro si usa un identificatore
 costituito da una sola lettera maiuscola, che dovrebbe rappresentare l'iniziale di un
 nome simbolico (nel caso di T significa "Type"). In particolare la libreria standard usa
 spesso:

 ● E per "Element",
 ● K per "Key".
 ● N per "Number"
 ● T per "Type"
 ● V per "Value",
 ● S. U. V per il secondo, terzo e quarto tipo.

 Ricapitolando la sintassi di una classe generica:

 196

 class NomeClasse<parametri>{

 / /codice

 }
 per istanziarla si usa la sintassi:

 NomeClasse<parametri>variabile = new NomeClasse<>()

 Facciamo un altro esempio usando la classe contenitore su delle classi fatte da noi
 invece che sulle classi String e Integer.

 public class Acqua {

 public String toString (){

 return " una bottiglia d'acqua" ;

 }

 }

 public class Vino {

 public String toString (){

 return " una bottiglia di vino" ;

 }

 }

 public class Main {

 public static void main (String[] args) {

 Contenitore<Vino> a = new Contenitore<>();

 a.setObject(new Vino());

 Vino vino=a.getObject();

 197

 System.out.println(vino); //

 }

 }

 Se si usano altri tipi si ottengono errori in compilazione:

 Codice

 Classi con più parametri generici

 Una classe generica può contenere più tipi di parametri riscriviamo la classe
 contenitore con due tipi di parametri.

 public class Contenitore < T , V >{

 private T t;

 private V v;

 Contenitore(T t,V v){

 this .t=t;

 this .v=v;

 }

 public T getT () {

 return t;

 }

 public V getV () {

 return v;

 }

 }

 198

https://replit.com/@RolandoSucco/Introduzione-ai-generics1#Main.java

 La classe contenitore si istanzia passando due parametri che possono essere: due
 oggetti di tipo diverso, o due oggetti dello stesso tipo il funzionamento è identico.

 public class Main {

 public static void main (String [] args) {

 Contenitore<String,Integer> a= new Contenitore("java " , 17);

 System.out.println(a.getT()+a.getV());

 Contenitore<String,String> b= new Contenitore("linguaggio

 " , "java");

 System.out.println(b.getT()+b.getV());

 }

 }

 Codice

 Parametri di tipo delimitati (bounded Types)

 Esistono situazioni in cui si ha la necessità di applicare un limite al parametro.
 Scriviamo una classe Generica che si occupa di calcoli.

 class Statistica < T >{

 private T[] numeri;

 Statistica(T[] numeri) {

 this .numeri = numeri;

 }

 double getMedia () {

 double sum = 0.0 ;

 for (T numero : numeri) {

 sum += numero.doubleValue();

 }

 return sum / numeri.length;

 }

 }

 Quando si compila la classe si ha un errore:

 199

https://replit.com/@RolandoSucco/classe-generics-con-piu-parametri#Main.java

 perché il metodo doubleValue non viene riconosciuto in quanto è un metodo della
 classe Number mentre T è un tipo Object.

 Si deve fare in modo che la classe accetti solo parametri di tipo numerico . Per far
 questo si deve estendere il parametro con la classe Number, così da porre un limite
 superiore.

 class Statistica < T extends Number >{

 private T[] numeri;

 Statistica(T[] numeri) {

 this .numeri = numeri;

 }

 double getMedia () {

 double sum = 0.0 ;

 for (T numero : numeri) {

 sum += numero.doubleValue();

 }

 return sum / numeri.length;

 }

 }

 200

 Abbiamo specificato che il parametro T deve essere sostituito da un tipo
 compatibile con Number .

 Creiamo la classe di Main per il test:

 public class Main {

 public static void main (String [] args) {

 Statistica <Integer>s;

 s = new Statistica(new Integer[]{ 10 , 20 , 30 , 40 , 50 });

 System.out.println("Media= " +s.getMedia());

 }

 }

 Codice

 Metodi generici

 Un metodo è detto generico quando accetta parametri di diversi Data Type su cui
 esegue lo stesso algoritmo.

 Se non vi fosse la possibilità di scrivere il metodo in forma generica, per adempiere
 allo stesso scopo si dovrebbe ricorrere al meccanismo dell'overloading dei metodi,
 che comporta la necessità di scrivere tanti metodi che eseguono lo stesso compito
 su tipi di dato differenti.

 Sintassi:

 modificatore <parametri> tipoDiRitorno nomeMetodo(attributi){

 //corpo}
 201

https://replit.com/@RolandoSucco/Limite-dei-parametri-generics#Main.java

 Prima del tipo di ritorno, si scrivono dentro le parentesi angolari < > la lista dei
 parametri generici separati dalla virgola (.)

 Esempio:

 public static <E extends Number> void print (E[] a) {

 for (E e : a)

 System.out.print(e + " ");

 }

 Con questo metodo si può stampare un array di qualsiasi tipo.

 public class Main {

 public static void main (String[] args) {

 Integer[] a = { 1 , 2 , 3 , 4 };

 Double[] b = { 1.4 , 2.5 , 3.6 , 4.7 };

 System.out.println("un array di interi ");

 print(a);

 System.out.println("un array di double ");

 print(b);

 }

 public static <E> void print (E[] a) {

 for (E e : a)

 System.out.print(e + " ");

 System.out.println();

 }

 }

 Output:

 Consideriamo il metodo generico per terminare il massimo tra tre parametri:
 202

 public static <T extends Comparable<T>> T max (T a, T b, T c) {

 T tmp;

 tmp = a;

 if (b.compareTo(tmp) > 0) {

 tmp = b;

 }

 if (c.compareTo(tmp) > 0) {

 tmp = c;

 }

 return tmp;

 }

 Nel listato il metodo max che ha, nella sezione dei parametri di tipo formali. Un
 parametro di tipo T che estende (extends) un'interfaccia generica di tipo
 Comparable . Se si devono estendere più classi o più interfacce (nei generici la
 keyword extends si usa anche per le interfacce) occorre utilizzare il carattere &.

 Codice

 Costruttore Generico

 Un costruttore di una classe può essere generico anche se la sua classe non lo è.
 Ad esempio possiamo inserire nella classe Contenitore un costruttore
 parametrizzato:

 class Contenitore {

 private Obiect t;

 <T> Contenitore(T t){

 this .t=t;

 }

 }

 La dichiarazione del parametro T avviene tra il modificatore di accesso e la
 dichiarazione del costruttore.

 Creiamo una classe vuota e una di prova.

 class ClasseVuota {

 }

 203

https://replit.com/@RolandoSucco/Metodi-gerici#Main.java

 Codice

 Interfacce generiche

 Si possono realizzare anche interfacce generiche:

 interface MiaInterfaccia<T>{
 public void mioMetodo(T t);
 }
 Il metodo è stato solo dichiarato e sarà implementato all'interno di una classe che
 implementa l'interfaccia.

 class MiaClasse < T > implements MiaInterfaccia < T >{

 public void mioMetodo (T t){

 System.out.println(t);

 }

 }

 Se una classe implementa un'interfaccia generica allora anche la classe deve essere
 generica, e deve avere lo stesso numero di Type parametri e questi devono essere
 compatibili con quelli dell'interface.

 204

https://replit.com/@RolandoSucco/Costruttore-Generico#Main.java

 La classe Test:

 public class Main {

 public static void main (String[] args) {

 MiaInterfaccia<String> a = new MiaClasse<>();

 MiaInterfaccia<Integer> b = new MiaClasse<>();

 a.mioMetodo("java");

 b.mioMetodo(8);

 }

 }

 Codice

 L'INTERFACCIA COMPARABLE

 Abbiamo visto che la classe Arrays del package java.util, definisce il metodo statico
 sort in grado di ordinare un array di valori primitivi o di oggetti, l'istruzione:

 Arrays.sort(unArray);
 ordina gli elementi dell'intero array in senso crescente.

 import java.util.*;

 public class Main {

 public static void main (String[] args) {

 int [] interi={ 5 , 7 , 8 , 9 , 1 , 3 , 2 , 10 };

 String[] lista={ "pane" , "pasta" , "acqua" , "frutta" };

 System.out.println("array di numeri interi non ordinato");

 System.out.println(Arrays.toString(interi));

 System.out.println("array di stringe non ordinato");

 System.out.println(Arrays.toString(lista));

 Arrays.sort(interi);

 Arrays.sort(lista);

 System.out.println("array di numeri interi ordinato");

 System.out.println(Arrays.toString(interi));

 System.out.println("array di string ordinato");

 System.out.println(Arrays.toString(lista));

 205

https://replit.com/@RolandoSucco/Interfaccia-Generica#Main.java

 }

 }

 Se si vuole ordinare un array di oggetti con Arrays.sort, l'oggetto deve implementare
 l'interfaccia Comparable.

 L'interfaccia Comparable contiene l'intestazione del solo metodo compareTo, che
 deve essere quindi definito per ogni classe che implementi l'interfaccia:

 public int compareTo(Object a)
 L'interfaccia consente di specificare come un oggetto vada confrontato con un altro
 definendo quando uno dei due "viene prima", "viene dopo" o "è uguale" all'altro. Il
 metodo compareTo dovrà restituire:

 ● un numero negativo, se l'oggetto sul quale è chiamato "viene prima" del
 parametro dell’altro;

 ● zero, se l'oggetto sul quale è chiamato "è uguale" al parametro dell’altro;
 ● un numero positivo, se l'oggetto sul quale è chiamato "viene dopo" il

 parametro dell’altro.

 A partire da java 5.0 l’interfaccia Comparable è di tipo parametrico:

 public interface Comparable<T> {
 int compareTo(T other);

 }
 Il parametro specifica il tipo degli oggetti che una certa classe accetta per fare
 confronti; di solito si tratta della stessa classe.

 Il vantaggio è che con la genericità non c’è bisogno di usare un cast per convertire
 un parametro di tipo Object nel tipo desiderato.

 Come esempio, si consideri la classe persona

 public class Persona {

 206

 private String nome;

 private String cognome;

 public Persona (String cognome, String nome){

 this .nome=nome;

 this .cognome=cognome;

 }

 public String toString (){

 return cognome+ "; " +nome ;

 }

 }

 E si vuole ordinare in modo naturale cognome nome.

 import java.util.*;

 public class Persona implements Comparable < Persona >{

 private String nome;

 private String cognome;

 public Persona (String cognome, String nome){

 this .nome=nome;

 this .cognome=cognome;

 }

 public String toString (){

 return cognome+ "; " +nome ;

 }

 @Override

 public int compareTo (Persona o) {

 if (cognome.compareToIgnoreCase(o.cognome)== 0){

 return nome.compareTo(o.nome); //se i cognomi sono uguali

 ordina per nome

 }

 return cognome.compareToIgnoreCase(o.cognome);

 }

 }

 La classe Test:

 public class Main {

 207

 public static void main (String[] args) {

 Persona[] persone= new Persona[4];

 persone[0]= new Persona("Fantozzi" , "Ugo");

 persone[1]= new Persona("Fantozzi" , "Pina");

 persone[2]= new Persona("Rossi" , "Mario");

 persone[3]= new Persona("Bianchi" , "Anna");

 System.out.println("array di persone ordinato");

 Arrays.sort(persone);

 for (Persona p:persone)

 System.out.println(p);

 }

 }

 Output:

 Codice

 L'INTERFACCIA COMPARATOR

 Quando si implementa Comparable si sta definendo un ordinamento naturale
 infatti si scrive all'interno della classe un ordinamento. E’ possibile specificare
 solo un criterio di ordinamento. Quando si ha bisogno di un ordinamento
 particolare (o di più di un ordinamento) allora si usa Comparator. È il caso di
 persone che si potrebbero voler ordinare non solo per cognome e nome ma
 anche per età, per altezza.

 208

https://replit.com/@RolandoSucco/Comparable#Main.java

 L'interfaccia Comparator

 definisce un solo metodo:

 public interface Comparator<T>{

 int compare(T o1, T o2);

 }
 L'interfaccia Comparator deve essere implementata in una classe distinta, dalla
 classe degli oggetti da comparare. Questo significa che è possibile creare più classi
 per definire un numero arbitrario di criteri di comparazione alternativi o comunque
 più particolari rispetto all’ordinamento “naturale” espresso tramite Comparable.

 Riprendiamo la classe Persona aggiungendo come attributo l'anno di nascita:

 import java.util.*;

 public class Persona implements Comparable < Persona >{

 private String nome;

 private String cognome;

 private int annoNascita;

 public Persona (String cognome, String nome, int

 annoNascita){

 this .nome=nome;

 this .cognome=cognome;

 this .annoNascita=annoNascita;

 }

 public String toString (){

 return cognome+ "; " +nome+ " ; " +annoNascita ;

 }

 public int getAnnoNascita () {

 return annoNascita;

 }

 @Override

 209

 public int compareTo (Persona o) {

 if (cognome.compareToIgnoreCase(o.cognome)== 0){

 return nome.compareTo(o.nome); //se i cognomi

 sono uguali ordina per nome

 }

 return cognome.compareToIgnoreCase(o.cognome);

 }

 }

 La classe per il confronto

 import java.util.Comparator;

 public class ConfrontaAnno implements Comparator < Persona > {

 @Override

 public int compare (Persona persona1, Persona persona2) {

 int r;

 if (persona1.getAnnoNascita() < persona2.getAnnoNascita()) {

 r = + 1 ;

 } else if (persona1.getAnnoNascita() >

 persona2.getAnnoNascita()) {

 r = - 1 ;

 } else {

 r = 0 ;

 }

 return r;

 }

 }

 E la classe Main:

 import java.util.*;

 public class Main {

 public static void main (String[] args) {

 Persona[] persone= new Persona[4];

 persone[0]= new Persona("Fantozzi" , "Ugo" , 1945);

 persone[1]= new Persona("Fantozzi" , "Pina" , 1952);

 persone[2]= new Persona("Rossi" , "Mario" , 2001);

 persone[3]= new Persona("Bianchi" , "Anna" , 2000);

 System.out.println("array di persone ordinato per cognome e

 210

 nome");

 Arrays.sort(persone);

 for (Persona p:persone)

 System.out.println(p);

 System.out.println("array di persone ordinato per anno di

 nascita");

 Arrays.sort(persone, new ConfrontaAnno());

 for (Persona p:persone)

 System.out.println(p);

 }

 }

 Output:

 Codice

 211

https://replit.com/@RolandoSucco/Comparator#Main.java

 Collection

 In Java, la lunghezza di un array non può essere cambiata. Per esempio, se si scrive
 un programma che registra in un array i prodotti presenti in un magazzino. Si
 potrebbe chiedere all'utente il numero di prodotti da memorizzare e poi creare l'array
 utilizzando la seguente istruzione:

 Prodotto[] prodotti = new Prodotto[numeroProdotti];

 Ma cosa accade se l'utente inserisce numeroProdotti ma poi decide d'inserire un
 altro prodotto?

 Non esiste alcuna possibilità d'incrementare le dimensioni dell'array. Per fare questo
 si deve creare un nuovo array più grande:

 copiare gli elementi dall'array originale al nuovo array

 e poi rinominare il nuovo array come prodotti. Per esempio, le seguenti istruzioni
 raddoppiano le dimensioni dell'array:

 212

 class Main {

 static int inseriti = 0 ;

 static Scanner tastiera = new Scanner(System.in);

 public static void main (String[] args) {

 System.out.println("Inserisci il numero di prodotti");

 int numeroProdotti = tastiera.nextInt();

 tastiera.nextLine();

 Prodotto[] prodotti = new Prodotto[numeroProdotti];

 for (int i= 0 ;i<prodotti.length;i++)

 prodotti=inserisci(prodotti);

 System.out.println("lista

 prodotti\n" +Arrays.toString(prodotti));

 prodotti=inserisci(prodotti);

 System.out.println("Nuova lista

 prodotti\n" +Arrays.toString(prodotti));

 }

 public static Prodotto[] inserisci(Prodotto[] p) {

 System.out.println("Inserisci Prodotto");

 String nome = tastiera.next();

 if (inseriti < p.length) {

 p[inseriti] = new Prodotto(nome);

 inseriti++;

 } else {

 Prodotto[] tmp = new Prodotto[2 * p.length];

 for (int i = 0 ; i < p.length; i++)

 tmp[i] = p[i];

 tmp[inseriti] = new Prodotto(nome);

 p = tmp;

 inseriti++;

 }

 return p;

 }

 }

 Output:

 213

 Codice

 Per andare oltre questo limite, Java mette a disposizione, nel framework collection
 (JFC) una serie strumenti che consentono di gestire liste di oggetti di lunghezza
 variabile. In Java si hanno due concetti distinti:

 1.Collection : un gruppo di singoli elementi

 2. Map: un gruppo di coppie di oggetti chiave-valore

 Collection<T>

 Costituisce l'interfaccia più generica della libreria Java che contiene le classi per le
 collezioni. Questa interfaccia descrive le operazioni di base che devono essere
 implementate da tutte le classi di tipo collezione. Ci sono molte classi predefinite che
 implementano l'interfaccia Collection<T> ed è possibile definirne di nuove. Un
 metodo scritto per lavorare su un parametro di tipo Collection<T> funzionerà anche
 con tutte queste classi. Inoltre, i metodi dell'interfaccia Collection<T> garantiscono la
 possibilità di utilizzare contemporaneamente diverse classi di tipo collezione.

 214

https://replit.com/@RolandoSucco/RaddoppioArray#Main.java

 ● Collection: nessuna ipotesi su elementi duplicati o relazioni d'ordine
 ● List: introduce l'idea di sequenza
 ● Set: introduce l'idea di insieme di elementi quindi senza duplicati
 ● SortedSet: Insieme ordinato
 ● Map: introduce il concetto di mappa cioè di insieme che associa chiavi

 (identificatori univoci) a valori

 Il collections framework (package java.util) è costituito dai seguenti componenti
 architetturali:

 1. interfacce , rappresentate dai tipi di dati astratti che modellano le strutture di
 dati quali per esempio: Set, List, Queue, Map e Deque,

 2. le classi concrete che realizzano le interfacce: HashSet, ArrayList, HashMap,
 TreeSet, TreeMap, LinkedList. LinkedHashSet. LinkedHashMap

 3. algoritmi, rappresentati dalle operazioni che possiamo effettuare sulle
 strutture dati, come: ricerca (searching), ordinamento (sorting), mescolamento
 (shuffling) implementati in appositi metodi statici della classe
 java.util.Collections

 4. costrutti di attraversamento delle collezioni, rappresentati dal costrutto for
 avanzato e da un oggetto definito iteratore (Iterator).

 215

 Sono presenti almeno due implementazioni per ogni interfaccia:

 Implementazioni primarie HashSet ArrayList HashMap

 TreeSet e TreeMap implementano SortedSet e SortedMap

 COSTRUTTORI

 Nonostante non sia espressamente richiesto dall'interfaccia, qualunque classe che
 implementi l'interfaccia Collection<T> dovrebbe avere almeno due costruttori:

 1. un costruttore senza argomenti che crea un oggetto di tipo Collection<T>
 vuoto

 2. un costruttore con un parametro di tipo Collection<? extends T> che crea un
 oggetto di tipo Collection<T> contenente gli stessi elementi dell'argomento.

 Un'interfaccia non si può istanziare, ecco perché bisogna istanziare una delle classi
 che implementano l'interfaccia:

 'ArrayList() o LinkedList().
 Tale istanza può cambiare la propria lunghezza durante l'esecuzione del programma.

 La classe ArrayList si basa comunque su array. Di fatto, per estendere la capacità
 del suo array, ArrayList utilizza la tecnica utilizzata precedentemente per estendere
 l'array prodotti.

 Collection<E> list = new ArrayList<>();

 216

 La classe LinkedList, è sviluppata avvalendosi della struttura di dati di tipo lista
 concatenata. Una lista concatenata è composta da un certo numero di nodi,
 ciascuno dei quali viene creato in runTime e contiene un riferimento al nodo
 successivo.

 Lista Concatenata

 Alcune liste concatenate, poi, soddisfano anche la seguente proprietà:

 Ciascun Nodo contiene anche un collegamento al Nodo precedente questa viene
 detta lista doppiamente concatenata.

 Lista doppiamente concatenata.

 Collection<E>lista= new LinkedList<>();

 217

 METODI

 public int size() Restituisce il numero di elementi contenuti nell'oggetto chiamante.

 public boolean isEmpty() Restituisce true se l'oggetto chiamante è vuoto, altrimenti
 restituisce false.

 public boolean contains(Object o) Restituisce true se l'oggetto chiamante contiene
 almeno un'istanza di o.

 public boolean containsAll(Collection<?> c) Restituisce true se l'oggetto
 chiamante contiene tutti gli elementi in c . Per ogni elemento in c , il metodo usa
 elemento .equals per determinare se elemento è contenuto nell'oggetto chiamante.

 public boolean equals(Object altro) Questo è il metodo equals per la collezione,
 non per gli elementi in essa contenuti. Sovrascrive il metodo equals ereditato.

 218

 public boolean add(E elemento) Garantisce che l'oggetto chiamante contenga
 l'elemento specificato. Restituisce true se l'oggetto chiamante è stato modificato
 dalla chiamata. Restituisce false se l'oggetto chiamante non ammette elementi
 duplicati e contiene già elemento; inoltre, restituisce false anche se l'oggetto
 chiamante non viene modificato per qualunque altro motivo.

 public boolean addAll(Collection<? extends E> collezioneDaAggiungere)
 Garantisce che l'oggetto chiamante contenga tutti gli elementi in
 collezioneDaAggiungere. Restituisce true se l'oggetto chiamante è stato modificato
 dalla chiamata, altrimenti restituisce false.

 public boolean remove(Object elemento) Rimuove una singola istanza
 dell'elemento specificato dall'oggetto chiamante. Restituisce true se l'oggetto
 chiamante conteneva l'elemento, altrimenti restituisce false.

 public boolean removeAll(Collection<?> collezioneDaRimuovere) Rimuove
 dall'oggetto chiamante tutti gli elementi che sono contenuti anche in
 collezioneDaRimuovere. Restituisce true se l'oggetto chiamante è stato modificato,
 altrimenti restituisce false.

 public void clear() Rimuove tutti gli elementi dall'oggetto chiamante.

 public boolean retainAll(Collection<?> conservaElementi) Mantiene nell'oggetto
 chiamante tutti gli elementi contenuti anche nella collezione conservaElementi. In
 altre parole, rimuove dall'oggetto chiamante tutti gli oggetti non contenuti nella
 collezione conservaElementi. Restituisce true se l'oggetto chiamante è stato
 modificato dalla chiamata, altrimenti restituisce false.

 Le caratteristiche dell'interfaccia Collection:

 • non definisce l'ordine in cui sono memorizzati gli elementi

 • non definisce se ci possono essere elementi duplicati

 • non può contenere tipi primitivi ma solamente oggetti.

 Per inserire tipi primitivi è necessario effettuare il boxing. Dalla versione 1.5 di Java,
 il boxing viene fatto automaticamente (si parla di autoboxing).

 Nell'esempio usiamo la Classe ArrayList ma lo stesso funziona con La classe
 LinkedList

 219

 import java.util.ArrayList;

 import java.util.Collection;

 import java.util.LinkedList;

 public class Main {

 public static void main (String args[]) {

 Collection<String> list = new ArrayList<>();

 System.out.println(String.format("%40s %25s %35s" ,

 "Istruzione" , "Lista" , "size"));

 System.out.println(String.format("%s" ,

 "---

 ---"));

 stampaList("List<String> list = new ArrayList<>();" , list);

 list.add("Arance");

 stampaList("list.add(\"Arance\");" , list);

 list.add("Pere");

 stampaList("list.add(\"Pere\");" , list);

 list.add("Mele");

 stampaList("list.add(\"Mele\");" , list);

 list.add("Melone");

 stampaList("list.add(\"Melone\");" , list);

 list.add("Mele");

 stampaList("list.add(\"Mele\");" , list);

 list.remove("Mele"); // eliminamo l'elemento Mele

 stampaList("list.remove(\"Mele\");" , list);

 Collection<String>lista= new LinkedList<>(list);

 stampaList("Collection<String>lista= new LinkedList<>(list);" ,

 lista);

 list.clear(); // cancella la lista

 stampaList("list.clear();" , list);

 }

 private static void stampaList (String a, Collection<String>

 list) {

 System.out.println(String.format("%40s %30s %30s " , a, list,

 list.size()));

 }

 220

 }

 Output:

 Codice:

 221

https://replit.com/@RolandoSucco/Esempio-Collection#Main.java

 Interfaccia List

 L'interfaccia List estende l'interfaccia Collection con l’aggiunta di alcuni metodi che
 operano con indici ed ha le seguenti caratteristiche:

 222

 • gli oggetti sono ordinati in base all'ordine di inserimento

 • può contenere duplicati

 • consente di aggiungere elementi specificando l'indice (ad es. è possibile inserire un
 elemento nella posizione 5)

 ● consente di ottenere gli elementi specificando l'indice

 Metodi una aggiunta ai metodi di Collection

 public void add(int indice, E nuovoElemento) Inserisce nuovoElemento alla
 posizione indice nella lista di elementi dell'oggetto chiamante. L'elemento che si
 trovava alla posizione indice e tutti i successivi vengono spostati di una posizione.

 public boolean addAll(int indice, Collection<? extends E>
 collezioneDaAggiungere) Inserisce tutti gli elementi di collezioneDaAggiungere
 nella lista di elementi dell'oggetto chiamante a partire dalla posizione indice.
 L'elemento originariamente alla posizione indice e i successivi vengono spostati più
 avanti. Gli elementi sono aggiunti nello stesso ordine in cui sono forniti da un
 iteratore di collezioneDaAggiungere.

 public E get(int indice) Restituisce l'elemento indicato dall'indice.

 public E set(int indice, E nuovoElemento) Imposta l'elemento alla posizione indice
 a nuovoElemento. Viene restituito l'elemento che si trovava originariamente in quella
 posizione.

 public E remove(int indice) Rimuove l'elemento alla posizione indice dell'oggetto
 chiamante. Sposta gli elementi successivi a sinistra di una posizione (sottrae 1 ai
 loro indici). Restituisce l'elemento rimosso.

 public int index0f(Object obiettivo) Restituisce l'indice del primo elemento uguale
 a obiettivo. Utilizza il metodo equals dell'oggetto obiettivo per verificare
 l'uguaglianza. Restituisce -1 se obiettivo non viene trovato.

 public int lastIndex0f(Object obiettivo) Restituisce l'indice dell'ultimo elemento
 uguale a obiettivo. Utilizza il metodo equals dell'oggetto obiettivo per verificare
 l'uguaglianza. Restituisce -1 se obiettivo non viene trovato.

 223

 public List<E> subList(int daIndice, int aIndice) Restituisce una vista degli
 elementi alle posizioni comprese tra daIndice a aIndice dell'oggetto chiamante;
 l'oggetto alla posizione daIndice è incluso, quello alla posizione aIndice (se presente)
 è escluso. La vista è composta di riferimenti all'oggetto chiamante; le modifiche alla
 vista quindi modificano potenzialmente l'oggetto chiamante. L'oggetto restituito è di
 tipo List<T>, ma non è necessario che sia dello stesso tipo dell'oggetto chiamante.
 Se daIndice coincide con aIndice, viene restituito un oggetto List<E> vuoto.

 Listlterator<E> listlterator() Restituisce un iteratore per l'oggetto chiamante (gli
 iteratori per le collezioni sono trattati successivamente).

 Listlterator<E> listIterator(int indice) Restituisce un iteratore per l'oggetto
 chiamante che parte da indice. Il primo elemento restituito dall'iteratore è quello alla
 posizione indice.

 La classe ArrayList realizza l’interfaccia List mediante un array, mentre la classe
 LinkedList realizza l'interfaccia List usando la struttura lista concatenata. Aggiungere
 e rimuovere elementi in una lista concatenata è un'operazione efficiente. Visitare in
 sequenza gli elementi di una lista concatenata è efficiente, ma accedervi in ordine
 casuale non lo è.

 public class Main {

 224

 public static void main (String args[]) {

 List<Integer> list = new LinkedList<>();

 System.out.println(String.format("%40s %25s %35s %15s " ,

 "Istruzione" , "Lista" , "size" , "restituito"));

 System.out.println(String.format("%s" ,

 "---

 --

 ----------------"));

 stampaList("List<Integer> list = new LinkedList<>();" ,

 list, "[]");

 String b= "" +list.add(3);

 stampaList("list.add(3);" , list,b);

 b= "" +list.add(4);

 stampaList("list.add(4);" , list,b);

 list.add(1 , 5);

 stampaList("list.add(1,5);" , list, "void");

 list.add(3 , 5);

 stampaList("list.add(3,5);" , list, "void");

 b= "" +list.remove(new Integer(5)); // elimina l'elemento 5

 stampaList("list.remove(new Integer(5);" , list,b);

 b= "" + list.remove(1); // elimina l'elemento indice 1

 stampaList("list.remove(1);" , list,b);

 b= "" + list.get(1); // restituisce l'elemento indice 1

 stampaList("list.get(1);" , list,b);

 b= "" + list.set(0 , 11); // modifica l'elemento di indice 0

 stampaList("list.set(0,11);" , list,b);

 List<Integer> lista = new ArrayList<>(list);

 stampaList("List<Integer> lista = new ArrayList<>(list)" ,

 lista,lista.toString());

 list.clear(); // cancella la lista

 stampaList("list.clear();" , list, "void");

 }

 private static void stampaList (String a, List<Integer>

 list,String b) {

 System.out.println(String.format("%40s %30s %30s %10s " , a,

 list, list.size(),b));

 }

 225

 }

 Codice

 Output:

 La classe ArrayList<E>

 La classe ArrayList del Framework JCF implementa l’interfaccia List mediante un
 array dinamico (i cui elementi possono aumentare o diminuire a runtime), che
 consente l’accesso in tempo costante a qualunque elemento a partire dal suo indice.
 Ogni oggetto di tipo ArrayList ha:

 ● una capacity che rappresenta lo spazio allocato per contenere gli elementi
 dell'array

 ● una size che rappresenta il numero di elementi che esso effettivamente
 contiene.

 Quando il numero di elementi aggiunti supera la capacità dell'array, quest'ultima
 viene automaticamente incrementata e lo stesso array viene ricreato.

 Come tutte le altre classi del JCF, la classe ArrayList è parametrica.

 Quando si crea un oggetto della classe ArrayList<E>, occorre specificare il tipo dei
 suoi elementi, che andrà a sostituire il parametro di tipo, E. Ad esempio:

 ArrayList<String> lista= new ArrayList<>();

 ArrayList<Prodotto> listaProdotti= new ArrayList<>();

 226

https://replit.com/@RolandoSucco/Esempio-List#Main.java

 L'unico vincolo posto al tipo d’elemento è che non può essere un tipo primitivo, come
 int (ma può essere la corrispondente classe involucro, Integer).

 Le caratteristiche di un ArrayList sono:

 • è un array ridimensionabile, dinamicamente. Cresce le sue dimensioni per
 accogliere nuovi elementi e riduce le dimensioni quando gli elementi vengono
 rimossi.

 ● Utilizza internamente un'array per memorizzare gli elementi, permette di
 recuperare gli elementi dal loro indice.

 ● Consente valori duplicati e nulli.
 ● Mantiene l'ordine di inserimento degli elementi.
 ● Non è possibile creare un ArrayList di tipi primitivi è necessario utilizzare tipi

 boxed come Integer, Character, Boolean etc.
 ● Non è sincronizzato. Se più thread tentano di modificare un ArrayList allo

 stesso tempo, il risultato finale sarà non deterministico. È necessario
 sincronizzare esplicitamente l'accesso a un ArrayList se più thread lo
 modificheranno.

 Costruttori

 ● public ArrayList<E>() crea un'istanza della classe ArrayList vuota in cui non è
 specificata la capacità iniziale

 ● public ArrayList<E>(int initial Capacity) crea un'istanza della classe ArrayList in
 cui è specificata la capacità iniziale

 ● public ArrayList(Collection<? extends E> c) Costruisce un'arrayList
 contenente gli elementi della raccolta fornita, nello stesso ordine in cui sono
 memorizzati in essa. Questo oggetto di tipo ArrayList ha una capacità iniziale
 pari al 110% della dimensione della raccolta copiata..

 Metodi

 La classe ArrayList implementa i metodi astratti definiti nelle interfacce Collection,
 List e nelle interfacce Serializable e Cloneable,RandomAccess e delle classi astratte
 AbstractCollection e AbstractList

 227

 Object clone(). Restituisce una copia superficiale dell'istanza di ArrayList .

 void ensureCapacity(int minCapacity) Aumenta la capacità di questa istanza di
 ArrayList , se necessario, per garantire che possa contenere almeno il numero di
 elementi specificato dall'argomento di capacità minima.

 int lastIndexOf(Object o) Restituisce l'indice dell'ultima occorrenza dell'elemento
 specificato in questo elenco o -1 se questo elenco non contiene l'elemento.

 void sort(Comparator<? super E> c) Ordina questo elenco in base all'ordine
 indotto dall'oggetto specificato Comparator.

 void trimToSize() Ritaglia la capacità di questa istanza di ArrayList in modo che
 corrisponda alla dimensione corrente dell'elenco.

 228

 La classe LinkedList<E>

 La classe LinkedList, è sviluppata avvalendosi della struttura di dati di tipo lista
 concatenata.

 Di seguito sono riportati alcuni punti chiave:

 ● LinkedList mantiene l'ordine di inserimento degli elementi.
 ● LinkedList può avere valori duplicati e nulli.

 229

 • linkedList implementa Queue Deque interfacce Pertanto, può anche essere usata
 come Queue, Deque o Stack.

 • LinkedList non è thread-safe. È necessario sincronizzare esplicitamente le
 modifiche simultanee a LinkedList in un ambiente a più thread

 Costruttori

 LinkedList() Costruisce una lista vuota.

 LinkedList(Collection<? extends E> c) Costruisce una lista contenente gli
 elementi della raccolta specificata, nell'ordine in cui vengono restituiti dall'iteratore
 della raccolta.

 Metodi

 Usandola come Lista si usano tutti i metodi visti per List più alcuni metodi che sono
 propri della classe

 230

 231

 Codice

 232

https://replit.com/@RolandoSucco/Esempio-LinkedList#Main.java

 boolean removeFirstOccurrence(E e) Rimuove la prima occorrenza dell'elemento
 specificato nella lista (quando si attraversa dalla testa alla coda).

 boolean removeLastOccurrence(E e) Rimuove l'ultima occorrenza dell'elemento
 specificato dalla lista (quando si attraversa dalla testa alla coda).

 233

 ARRAYLIST E LINKEDLIST A CONFRONTO

 La decisione se scegliere la classe ArrayList oppure la classe LinkedList, dipende
 dalle performance e dalle operazioni più frequentemente effettuate dall'applicazione
 sviluppata. Una LinkedList è più efficiente nei casi di inserimento e cancellazione
 degli elementi, perché la lista viene modificata agendo solo sul riordinamento dei
 collegamenti tra i nodi, un ArrayList lo è nelle operazioni di accesso e ottenimento
 degli elementi tramite 'indicizzazione, perché si procede in modo arbitrario
 (direttamente alla posizione indicata) e non sequenziale.

 L'interfaccia Iterator<T>

 Iterator è un'interfaccia utilizzata del framework Collections che permette di iterare
 su una collezione. Qualunque classe implementi l'interfaccia Collection<T> offre il
 metodo iterator(), la chiamata al metodo iterator() sulla collezione utilizzata, ne
 restituisce un'implementazione concreta.

 L'iteratore si può definire come un cursore che seleziona in maniera sequenziale gli
 elementi della collezione.

 L'interfaccia Iterator<T> fa parte del package java.util.

 234

 Metodi

 boolean hasNext() ritorna true se la
 collezione ha un successivo elemento.
 Genera un'eccezione
 NoSuchElementException se non
 esiste l'elemento successivo.

 T next() ritorna il successivo elemento
 della collezione.

 void remove() rimuove l'ultimo
 elemento ritornato dall'iteratore che
 deve essere usato solo durante un ciclo

 sugli elementi, altrimenti Java genera l'eccezione

 Questo metodo può essere chiamato solo una volta per ogni chiamata a next. Se la
 collezione è stata modificata senza utilizzare remove, il comportamento dell'iteratore
 non è specificato.

 Genera una IllegalStateException se il metodo next non è ancora stato chiamato o
 se il metodo remove è già stato chiamato dopo l'ultima chiamata di next.

 Genera una UnsupportedOperationException se l'operazione di rimozione non è
 supportata da questo Iterator<T>.

 Tutte le eccezioni citate sono del tipo non controllato, quindi non è necessario
 gestirle in un blocco catch o dichiararle in una clausola throws.

 L'eccezione NoSuchElementException appartiene al package java.util, che deve
 essere quindi importato se il codice utilizza questa classe. Tutte le altre eccezioni
 appartengono al package java. lang e quindi non richiedono l'importazione di
 package aggiuntivi.

 I passi per iterare una lista sono:

 1. creiamo un ciclo while: la condizione da verificare è hasNext() che ritorna true
 finché non arriviamo all'ultimo elemento della lista

 2. il metodo next/) ritorna l'elemento successivo

 235

 import java.util.ArrayList;

 import java.util.Iterator;

 import java.util.List;

 public class Main {

 public static void main (String[] args) {

 List<Integer> numbers = new ArrayList<>();

 numbers.add(13);

 numbers.add(18);

 numbers.add(25);

 numbers.add(40);

 System.out.println("------ la lista contiene--------");

 System.out.println(numbers);

 Iterator<Integer> numbersIterator = numbers.iterator();

 while (numbersIterator.hasNext()) {

 Integer num = numbersIterator.next();

 if (num % 2 != 0) {

 numbersIterator.remove();

 }

 }

 System.out.println("------ la lista contiene--------");

 System.out.println(numbers);

 }

 }

 Output:

 236

 l'interfaccia Listlterator<E>

 L'interfaccia Listlterator<E> estende Iterator<T>. Un Listlterator<T> ha tutti i metodi
 di un Iterator<E>, più altri che abilitano nuove funzionalità: un Listlterator<T> può
 muoversi lungo la lista degli elementi della collezione in entrambe le direzioni e offre
 metodi, come set e add, che possono essere utilizzati per modificare gli elementi
 della collezione. Un oggetto di tipo ListIterator è disponibile solo per gli oggetti di tipo
 List.

 Metodi

 • void add(E e) aggiunge l'elemento indicato dal parametro nella lista corrente. Se
 nella lista sono presenti altri elementi, l'elemento è inserito prima del successivo
 elemento che sarebbe ritornato dal metodo next e dopo il precedente elemento che
 sarebbe ritornato dal metodo previous.

 • void set(E e) modifica l'ultimo elemento ritornato dai metodi next o previous con
 l'elemento specificato dal parametro e.

 ● boolean hasPrevious() ritorna true se la collezione ha un precedente
 elemento. E previous() ritorna il precedente elemento della collezione.

 ● int nextlndex() ritorna l'indice del prossimo elemento che sarebbe ritornato dal
 metodo next.

 ● int previousIndex() ritorna l'indice del precedente elemento che sarebbe
 ritornato dal metodo previous.

 237

 CURSORI: Un oggetto di tipo ListIterator ha un cursore che rappresenta una sorta di
 indicatore per la posizione dove l'iteratore si troverà in un determinato momento
 durante l'iterazione. Questa posizione non sarà mai sull'elemento da processare, ma
 sarà sempre nel mezzo di due elementi.

 Per spiegare la Figura vediamo che cosa accade se invochiamo i seguenti metodi a
 partire dal cursore posizionato all'indice 2:

 - hasNext ritorna true perché c'è l'elemento C:

 - hasPrevious ritorna true perché c'è l'elemento B:

 - next ritorna l'elemento C:

 238

 - previous ritorna l'elemento B:

 - nextIndex ritorna l'indice 2:

 - previouslndex ritorna l'indice 1

 ● add inserisce un elemento tra l'elemento C e l'elemento B e prima del cursore:
 ● set modifica l'elemento C se prima è invocato il metodo next . Altrimenti

 modifica l'elemento B se prima è invocato il metodo previous ;
 ● remove elimina l'elemento C se prima è invocato il metodo next, altrimenti

 elimina l'elemento B se prima è invocato il metodo previous.

 ATTENZIONE I metodi set e remove agiscono sempre sull'elemento corrente
 ritornato dal metodo next o previous, mentre il metodo add agisce sulla posizione
 corrente del cursore.

 import java.util.ArrayList;

 import java.util.Iterator;

 import java.util.List;

 import java.util.ListIterator;

 public class Main {

 public static void main (String[] args) {

 List<Integer> numbers = new ArrayList<>();

 for (int i= 1 ;i< 6 ;i++)

 numbers.add(i);

 ListIterator<Integer> iteratore = numbers.listIterator();

 int i= 2 ;

 while (numbers.size()!= 1){

 i--;

 while (iteratore.hasNext()) {

 iteratore.next();

 if (i % 3 == 0 && numbers.size()!= 1){

 iteratore.remove();

 System.out.println(numbers);

 }

 i++;

 }

 i--;

 239

 while (iteratore.hasPrevious()) {

 iteratore.previous();

 if (i % 3 == 0 &&numbers.size()!= 1){

 iteratore.remove();

 System.out.println(numbers);

 }

 i++;

 }

 }

 }

 }

 Output:

 240

 Le Code

 Una coda o queue è una sequenza finita di elementi in cui:

 1. gli inserimenti possono avvenire soltanto alla fine della sequenza (all’estremità
 detta back);

 2. le rimozioni possono avvenire soltanto all’inizio della sequenza (all’estremità detta
 front).

 Una coda impone un ordine cronologico ai propri elementi: tra gli elementi presenti in
 coda, il primo elemento che è stato accodato all’estremità back sarà il primo
 elemento ad essere rimosso, dall’estremità front; il secondo elemento che è stato
 accodato sarà il secondo ad essere rimosso; e così via. Questa proprietà, che
 definisce le code, si chiama “First In, First Out” (FIFO) , cioè: chi è entrato per
 primo, uscirà per primo.

 241

 L'interfaccia Queue<E>

 Queue specializza Collection introducendo l'idea di coda di elementi da sottoporre a
 elaborazione

 ● ha una nozione di posizione (testa della coda)
 ● l'interfaccia di accesso si specializza:

 o remove() estrae l'elemento "in testa" alla coda, rimuovendolo

 o element () lo estrae senza rimuoverlo

 Ognuno di questi metodi è presente in due formati differenti:

 1. se l'operazione fallisce un formato lancia un'eccezione

 242

 2. l'altro restituisce un valore speciale (per esempio null o false).

 In particolare quando parliamo di valore speciale ci riferiamo alla situazione in cui il
 metodo restituisce o l'oggetto stesso appena aggiunto o recuperato, oppure un
 booleano (come nel caso del metodo offer()). Quindi, a seconda dell'esigenza, lo
 sviluppatore può usufruire di un metodo piuttosto che di un altro.

 Metodi

 Il metodo add(E e) se fallisce nell'aggiungere un elemento lancia una unchecked
 exception.

 Il metodo offer(E e) inserisce un elemento ritornando true o false qualora
 l'operazione di inserimento riesca oppure no.

 I metodi remove() e poll() ritornano e rimuovono l'elemento che si trova in testa alla
 coda. Nel caso in cui non ci sia niente da rimuovere nella coda, il metodo poll()
 ritorna null, mentre remove() lancia un'eccezione. Il metodo poll() restituisce un
 riferimento all'oggetto rimosso in caso di successo.

 I metodi element() e peek() invece ritornano ma non rimuovono l'elemento che si
 trova in testa alla coda.

 Nel caso in cui non ci sia niente alla testa della coda, il metodo peek() ritorna null.
 Mentre element() lancia un'eccezione. Il metodo peek() ritorna un riferimento
 all'oggetto rimosso in caso di successo.

 243

 In genere, le cose vengono usate nella modalità FIFO (first-in-first-out).

 Altri tipi di code possono utilizzare regole di posizionamento differenti, ad esempio le
 PriorityQueue che in cima alla coda avranno quegli elementi con una maggior
 priorità di essere estratti.

 L'interfaccia Queue viene implementata tramite le classi:

 LinkedList: sviluppata avvalendosi della struttura di dati di tipo lista doppiamente
 collegata, già vista come implementazione del tipo List.

 ArrayDeque: sviluppata avvalendosi della struttura di dati di tipo array dinamico che
 cresce o decresce a seconda delle necessità. Inoltre, non ha restrizioni di capacità e
 gli elementi null non sono ammessi

 244

 import java.util.Iterator;

 import java.util.LinkedList;

 import java.util.Queue;

 public class Main {

 public static void main (String[] args){

 Queue<String> coda= new LinkedList<>();

 print(coda);

 //inserimento valori nella coda

 coda.add("Alice");

 print(coda);

 coda.add("Bob");

 print(coda);

 coda.add("Trudi");

 print(coda);

 coda.offer("Eve");

 print(coda);

 coda.offer("mallory");

 print(coda);

 //estrazione della testa

 System.out.println("Dalla coda esce " +coda.poll());

 System.out.println("in coda ci sono " +coda.size()+ " persone esse sono:");

 Iterator<String> itera=coda.iterator();

 //(scorrere la coda senza estrarre

 while (itera.hasNext())

 245

 System.out.println(itera.next());

 while (!coda.isEmpty())

 System.out.println("Dalla coda esce " +coda.poll());

 System.out.println("in coda ci sono " +coda.size()+ " persone");

 }

 public static void print (Queue coda){

 System.out.println("in coda ci sono " +coda.size()+ " persone " +coda);

 }

 }

 Output:

 Codice

 La Classe PriorityQueue<E>
 Un'implementazione di Queue definita dalla classe PriorityQueue, ordina i propri
 elementi a seconda del proprio ordinamento naturale (definito mediante
 l'implementazione dell'interfaccia Comparable) o a seconda di un oggetto
 Comparator associato al momento della creazione. Attenzione che "usando un
 Iterator per iterare su di essa, non è garantito che i suoi elementi vengono iterati
 nell'ordine che ci si aspetta. Infatti per ragioni prestazionali, i suoi elementi sono
 gestiti in background senza rispettare l'ordinamento, utilizzando una lista. Il consiglio
 per iterare gli elementi ordinati è quello di usare un'istruzione come la seguente:

 Arrays.sort(coda.toArray0));

 246

https://replit.com/@RolandoSucco/Coda#Main.java

 Dove coda è un reference a un oggetto PriorityQueue. Infatti abbiamo prima
 trasformato in array la priority queue, e poi ordinato i suoi elementi mediante il
 metodo statico sort() della classe di utilità Arrays.

 Costruttori:

 1. PriorityQueue(): Crea un PriorityQueue con la capacità iniziale predefinita che
 ordina i suoi elementi secondo il loro ordinamento naturale.

 PriorityQueue<E> coda = new PriorityQueue<>();

 2. PriorityQueue(Collection<E> c): crea un PriorityQueue contenente gli elementi
 nella raccolta specificata.

 PriorityQueue<E> coda= new PriorityQueue<>(Raccolta<E> c);

 1. PriorityQueue(Comparator<E> comparator): crea un PriorityQueue con la
 capacità iniziale predefinita che ordina i suoi elementi in base al comparatore
 specificato.

 PriorityQueue<E> coda = new PriorityQueue<>(Comparator<E> comparatore);

 1. PriorityQueue(int initialCapacity) : crea un PriorityQueue con la capacità
 iniziale specificata che ordina i suoi elementi in base al loro ordinamento
 naturale.

 PriorityQueue<E> coda = new PriorityQueue<>(int initialCapacity);

 1. PriorityQueue(int initialCapacity, Comparator<E> comparator): crea un
 PriorityQueue con la capacità iniziale specificata che ordina i suoi elementi in
 base al comparatore specificato.

 PriorityQueue<E> coda = new PriorityQueue(int capacity, Comparator<E> c);

 247

 1. PriorityQueue(PriorityQueue<E> c) : crea un PriorityQueue contenente gli
 elementi nella coda di priorità specificata.

 PriorityQueue<E> coda = new PriorityQueue(PriorityQueue<E> c);

 1. PriorityQueue(SortedSet<E> c) : crea un PriorityQueue contenente gli
 elementi nel set ordinato specificato.

 PriorityQueue<E> coda = new PriorityQueue<>(SortedSet<E> c);

 import java.util.Iterator;

 import java.util.PriorityQueue;

 import java.util.Queue;

 public class Main {

 public static void main (String[] args){

 Queue<String> coda= new PriorityQueue<>();

 System.out.println("in coda ci sono " +coda.size()+ " persone" + coda);

 //inserimento valori nella coda

 coda.add("bob");

 System.out.println("in coda ci sono " +coda.size()+ " persone " + coda);

 coda.add("eve");

 System.out.println("in coda ci sono " +coda.size()+ " persone " + coda);

 coda.offer("trudy");

 System.out.println("in coda ci sono " +coda.size()+ " persone " + coda);

 coda.offer("mallory");

 System.out.println("in coda ci sono " +coda.size()+ " persone " + coda);

 coda.add("alice");

 System.out.print("in coda ci sono " +coda.size()+ " persone ");

 System.out.println(coda);

 System.out.println("L'estrazione avviene in ordine alfabetico, in base al

 compareTo()");

 while (!coda.isEmpty())

 System.out.println("Dalla coda esce " +coda.poll());

 System.out.println("in coda ci sono " +coda.size()+ " persone");

 }

 }

 Output:

 248

 Costruiamo una coda di persone munite di un codice che ne determina la priorità.

 public class Persona implements Comparable<Persona>{
 private String nome;
 private Codice codice;

 public Persona (String nome, Codice codice){

 this .nome=nome;

 this .codice=codice;

 }

 public String toString (){

 return nome + " Codice " +codice ;

 }

 @Override

 public int compareTo (Persona o) {

 return codice.compareTo(o.codice);

 }

 }

 Il codice è inserito in una Enum

 public enum Codice {

 249

 Rosso,Giallo,Bianco

 }

 import java.util.PriorityQueue;

 import java.util.Queue;

 public class Main {

 public static void main (String[] args) {

 Queue<Persona> coda = new PriorityQueue<>();

 Codice c;

 System.out.println("in coda ci sono " + coda.size() + "

 persone" + coda);

 // inserimento valori nella coda

 c = Codice.Bianco;

 coda.add(new Persona("bob" , c.Bianco));

 System.out.println("in coda ci sono " + coda.size() + "

 persone " + coda);

 coda.add(new Persona("eve" , c.Giallo));

 System.out.println("in coda ci sono " + coda.size() + "

 persone " + coda);

 coda.offer(new Persona("trudi", c.Rosso));

 System.out.println("in coda ci sono " + coda.size() + "

 persone " + coda);

 coda.offer(new Persona("mallory" , c.Rosso));

 System.out.println("in coda ci sono " + coda.size() + "

 persone " + coda);

 coda.add(new Persona("alice" , c.Giallo));

 System.out.print("in coda ci sono " + coda.size() + " persone

 ");

 System.out.println(coda);

 System.out.println("L'estrazione avviene in ordine alfabetico,

 in base al compareTo()");

 while (!coda.isEmpty())

 System.out.println("Dalla coda esce " + coda.poll());

 System.out.println("in coda ci sono " + coda.size() + "

 persone");

 }

 }

 250

 output:

 Codice

 L'interfaccia Deque <E>

 Interfacce Deque(che si pronuncia "deck") è una collezione lineare che supporta
 l'inserimento e la rimozione dei suoi elementi da entrambe le estremità. Può essere
 quindi utilizzata come una coda FIFO o LIFO a seconda della necessità. Come per
 Queue, le funzionalità di questa interfaccia sono duplicate per lanciare eccezioni o
 ritornare valori speciali. La seguente tabella riassume i principali metodi definiti in
 Deque.

 251

https://replit.com/@RolandoSucco/CodaPrioritaria#Main.java

 Poiché l'interfaccia Deque estende l'interfaccia Queue i metodi ereditati da questa si
 comportano come operazioni FIFO. Quindi chiamando:

 ● add o offer si inserisce un elemento in coda.
 ● remove o poll si rimuove un elemento dalla testa della coda.
 ● element o peek si visualizza l'elemento in testa alla coda.

 252

 Deque può essere utilizzata come stack. Pertanto, include i metodi di stack, vale a
 dire push e pop.

 Deque può essere implementata tramite le Classi concrete:

 LinkedList: sviluppata avvalendosi della struttura di dati di tipo lista doppiamente
 collegata, già vista come implementazione del tipo Lista.

 ArrayDeque: sviluppata avvalendosi della struttura di dati di tipo array dinamico che
 cresce o decresce a seconda delle necessità. Inoltre, non ha restrizioni di capacità e
 gli elementi null non sono ammessi.

 La classe ArrayDeque<E>

 Un ArrayDeque è un tipo speciale di array espandibile che ci consente di aggiungere
 o rimuovere un elemento da entrambi i lati. Un'implementazione di ArrayDeque può
 essere utilizzata come Stack (Last-In-First-Out) o Queue (First-In-First-Out).

 Costruttori

 ArrayDeque (): Costruisce un array vuoto con una capacità iniziale
 sufficiente per contenere 16 elementi.
 ArrayDeque (Collection <? extends E > c): Costruisce un Array
 contenente gli elementi della raccolta specificata, nell'ordine in cui
 vengono restituiti dall'iteratore della raccolta.
 ArrayDeque (int numElements): Costruisce un array vuoto con una
 capacità iniziale sufficiente per contenere il numero specificato di
 elementi

 import java.util.Deque;

 import java.util.Iterator;

 import java.util.ArrayDeque;

 public class Main {

 public static void main (String[] args){

 Deque<String> coda= new ArrayDeque<>();

 //inserimento valori nella coda

 coda.add("alice");

 coda.add("bob");

 coda.add("trudi");

 System.out.println("La prima della coda è: " +coda.peek()+ "

 253

https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html#ArrayDeque()
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html#ArrayDeque(java.util.Collection)
https://docs.oracle.com/javase/7/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html
https://docs.oracle.com/javase/7/docs/api/java/util/ArrayDeque.html#ArrayDeque(int)

 " +coda);

 //si inserisce alla testa della coda

 System.out.println("carol salta la coda e diventa la prima: ");

 coda.addFirst("carol");

 System.out.println("La prima della coda è: " +coda.peek()+ "

 " +coda);

 coda.offer("eve");

 coda.offer("mallory");

 System.out.println("in coda ci sono " +coda.size()+ " persone

 " +coda);

 //estrazione della testa

 System.out.println("Dalla coda esce " +coda.poll()+ " " +coda);

 System.out.println(coda.pollLast()+ " lascia la coda " +coda);

 System.out.println("in coda ci sono " +coda.size()+ " persone

 esse sono: visualizzandole in ordine inverso");

 Iterator<String> itera=coda.descendingIterator();

 //(scorrere la coda senza estrarre

 while (itera.hasNext())

 System.out.println(itera.next());

 while (!coda.isEmpty())

 System.out.println("Dalla coda esce " +coda.poll());

 System.out.println("in coda ci sono " +coda.size()+ "

 persone");

 }

 }

 Output:

 254

 codice

 Interface Set<E>

 L'interfaccia iava.util.Set definisce il tipo di dato Insieme. Le caratteristiche di questa
 collezione sono:

 ● non permette duplicati
 ● si perde il concetto di accesso posizionale ossia non si può richiedere di

 accedere all'elemento in posizione 10.

 L'interfaccia Set non definisce alcun metodo aggiuntivo rispetto all'interface
 Collection, l'unica differenza tra le interfacce Collection e Set consiste nel fatto che in
 una raccolta che implementi Set non è consentita la presenza di elementi duplicati,
 un vincolo che riguarda le specifiche del costruttore di default e del metodo add.

 255

https://replit.com/@RolandoSucco/ArrayDeque#Main.java

 Le operazioni possibili sono:

 ● test sulla presenza di un elemento;
 ● inserzione di una nuovo elemento:
 ● eliminazione di un elemento.

 Metodi

 boolean contains(Object) restituisce true se l'elemento è presente, false altrimenti.

 boolean add(E element): inserisce l'elemento element, viene reso true se
 l'elemento è stato aggiunto, false se era già presente.

 boolean remove (E element): rimuove l'elemento element se presente, viene reso
 true se l'elemento è stato eliminato, false se non era presente.

 boolean addAII(Collection c): aggiunge gli elementi della Collection c se non
 presenti, (implementando così una variante della unione), viene reso true se
 l'insieme è stato modificato.

 boolean removeAII(Collection c): rimuove gli elementi della Collection c se
 presenti. (implementando così una variante della differenza), viene reso true se
 l'insieme è stato modificato.

 256

 boolean retainAlI(Collection c): conserva solo gli elementi della Collection c che
 sono presenti, (implementando così una variante della intersezione), viene reso true
 se l'insieme è stato modificato.

 Inoltre, tra gli altri, vi sono i metodi: clear(), isEmpty(), size(), equals0), iterator(),
 dall'ovvio significato.

 Un'implementazione dell'interfaccia Set è data dalla classe HashSet.

 La parola 'hash"sì riferisce al fatto che la classe HashSet è implementata utilizzando
 una tabella hash. Una tabella hash (o mappa hash) è una struttura dati che contiene
 oggetti. Un oggetto è memorizzato in una tabella hash associandogli una chiave
 (key} univoca. Una tabella hash per un dato tipo di chiave è composta da:

 ● un array (chiamato bucket array)
 ● una funzione hash h

 I bucket array

 Un bucket array per una tabella hash è un array A di lunghezza N. Ogni singola cella
 di A è considerata come un «bucket» (secchio), cioè come un insieme delle coppie
 chiave-valore. Il numero N definisce la capacità dell'array.

 Se si considera che le chiavi sono dei numeri interi, uniformemente distribuiti
 nell'intervallo [0, N - 1], allora questo bucket array è proprio quello che occorre per
 implementare una tabella hash. Una entry e con chiave k è semplicemente inserita
 nel bucket A[k] (Figura). In questo caso le ricerche, gli inserimenti e le cancellazioni
 nel bucket array richiedono solo un tempo O(1).

 Non sempre le chiavi sono interi nell'intervallo [0,N-1].

 257

 Funzioni hash

 La seconda parte della struttura di una tabella hash è la funzione hash h: che
 trasforma ogni chiave k della mappa di origine in un numero intero compreso
 nell'intervallo [0, N - 1]. Avendo a disposizione questa funzione il metodo del bucket
 array può essere applicato a chiavi arbitrarie. L'idea quella è di utilizzare il valore
 della funzione hash. h(k), come indice nel bucket array, A, al posto della chiave k. In
 altre parole, si memorizza la entry (k,v) nel bucket A(h(k)).

 Naturalmente, nell'ipotesi che esistano due o più chiavi aventi lo stesso valore hash,
 allora due entry distinte saranno mappate nello stesso bucket in A. In questo caso si
 dice che si verifica una collisione. Seguendo la convenzione di Java, per
 determinare il valore di una funzione hash, h(k), sono necessari due passi:

 1. il primo è la trasformazione della chiave k in un numero intero, detto codice
 hash;

 2. il secondo è l'applicazione della cosiddetta funzione di compressione, ovvero
 la trasformazione del codice hash ottenuto nel passo precedente in un numero
 intero, compreso nell'intervallo ([0, N-1]), degli indici di un bucket array.

 258

 La classe HashSet<E>

 La classe HashSet implementa naturalmente tutti i metodi dell'interfaccia Set e non
 aggiunge altri metodi, a parte i costruttori.

 Costruttori

 HashSet() Crea un nuovo HashSet vuoto

 HashSet(Collection<? extends T> c) Crea un nuovo insieme contenente tutti gli
 elementi di c. Se c è nuli, genera un'eccezione NullPointerException.

 HashSet(int dimensioneiniziale) Crea un nuovo insieme vuoto della capacità
 specificata. Se la dimensione iniziale è minore di 0, genera un'eccezione
 IllegalArgumentException.

 import java.util.HashSet;

 import java.util.Iterator;

 259

 import java.util.Set;

 public class Main {

 public static void main (String[] args) {

 Set<Integer> s1 = new HashSet<>();

 s1.add(1);

 s1.add(2);

 System.out.println("s1 : " +s1);

 Set<Integer> s2 = new HashSet<>();

 s2.add(1);

 s2.add(3);

 System.out.println("s2 : " +s2);

 Set<Integer> union = unione(s1,s2);

 System.out.println("unione : " +union);

 Set<Integer> intersection = intersezione(s1,s2);

 System.out.println("intersezione : " +intersection);

 }

 // Calcola l'unione tra s1 ed s2, il metodo non modifica s1 ed s2

 private static Set<Integer> unione (Set<Integer> s1, Set<Integer> s2) {

 Set<Integer> res = new HashSet<Integer>(s1);

 res.addAll(s2);

 return res;

 }

 // Calcola l'intersezione di s1 ed s2, il metodo non modifica s1 ed s2

 private static Set<Integer> intersezione (Set<Integer> s1, Set<Integer> s2) {

 Set<Integer> s3= new HashSet<>();

 Iterator<Integer> a= s1.iterator();

 while (a.hasNext()){

 int i= a.next();

 if (s2.contains(i))

 s3.add(i);}

 return s3;

 }

 }

 Output:

 260

 L'interfaccia SortedSet<E>

 L'interfaccia SortedSet rappresenta una collezione di elementi senza duplicati,
 ordinati secondo un ordinamento ascendente naturale oppure secondo uno arbitrario
 fornito mediante un oggetto comparatore (Comparator).

 Estende, di fatto, l'interfaccia Set fornendo i seguenti ulteriori metodi:

 Comparator<? super E> comparator() ritorna l'oggetto comparatore utilizzato per
 l'ordinamento degli elementi di un insieme. Se non è stato fornito alcun oggetto
 comparatore, il metodo ritornerà null.

 E first() ritorna l'elemento di un insieme al primo posto nell'ordinamento.

 E last() ritorna l'elemento di un insieme all'ultimo posto nell'ordinamento.

 SortedSet<E> subSet(E fromElement, E toElement) ritorna un sottoinsieme di un
 insieme formato dagli elementi compresi nel range indicato dal parametro
 fromElement (incluso) e dal parametro toElement (escluso).

 SortedSet<E> headSet(E toElement) ritorna un sottoinsieme di un insieme formato
 dagli elementi che, secondo l'ordinamento, sono posti prima dell'elemento fornito dal
 parametro toElement (escluso).

 SortedSet<E> tailSet(E fromElement) ritorna un sottoinsieme di un insieme
 formato dagli elementi che secondo l'ordinamento, sono posti dopo o a partire
 dall'elemento fornito dal parametro fromElement (incluso).

 261

 La Classe TreeSet<E>

 TreeSet, è un Set implementato interiormente come un albero di ricerca bilanciato.
 Questa classe estende l'interfaccia SortedSet perché gli elementi vengono inseriti in
 modo ordinato secondo un ordinamento naturale della classe o non naturale.

 Di conseguenza gli elementi presenti nel TreeSet devono implementare l'interfaccia
 Comparable o l'interfaccia Comparator. Nello specifico gli elementi inseriti in un
 TreeSet formano un albero rosso/nero e indipendentemente dall'inserimento,
 l'iterarotre restituisce gli oggetti in modo ordinato.

 Costruttori

 In TreeSet abbiamo a disposizione diversi costruttori, tra cui:

 • public TreeSet(): Consente di creare un TreeSet vuoto;

 • public TreeSet (Collection c): Consente di creare un TreeSet con gli elementi
 contenuti nella Collection passata come argomento;

 • public TreeSet (Comparator c): Consente di assegnare agli elementi da ordinare
 una relazione d'ordine non naturale.

 Iterando con un iteratore su TreeSet, gli elementi verranno restituiti in maniera
 ordinata.

 Metodi

 boolean add(E e) Aggiunge l'elemento specificato a questo insieme se non è già
 presente.

 boolean addAll (Collection<? extends E> c) Aggiunge tutti gli elementi della
 collezione specificata a questo set.

 E ceiling(E e) Restituisce l'elemento minimo in questo set maggiore o uguale
 all'elemento dato o null se non esiste un tale elemento.

 void clear () Rimuove tutti gli elementi da questo set.

 Object clone() Restituisce una copia superficiale di questa TreeSet istanza.

 262

 Comparator<? super E> comparator () Restituisce il comparatore usato per
 ordinare gli elementi in questo set, o null se questo insieme usa l'ordinamento
 naturale dei suoi elementi.

 boolean contains (E e) Restituisce true se questo insieme contiene l'elemento
 specificato.

 Iterator<E> descendingIterator () Restituisce un iteratore sugli elementi in questo
 set in ordine decrescente.

 Navigableset<> descendingset () Restituisce una vista di ordine inverso degli
 elementi contenuti in questo Set

 E first() Restituisce il primo (più basso) elemento attualmente in questo set.

 boolean isEmpty() Restituisce true se questo insieme non contiene elementi.

 Iterator<E> iterator () Restituisce un iteratore sugli elementi in questo set in ordine
 crescente.

 E last () Restituisce l'ultimo (il più alto) elemento attualmente in questo set.

 boolean remove (E e) Rimuove l'elemento specificato da questo set se è presente.

 int size() Restituisce il numero di elementi in questo set (la sua cardinalità).

 NavigableSet<E> tailSet (E fromElement, boolean inclusive) Restituisce una
 vista della porzione di questo insieme i cui elementi sono maggiori di (o uguali a se
 inclusive è vero) fromElement.

 public class Main {

 public static void main (String[] args) {

 SortedSet<String> set = new TreeSet<>();

 set.add("pane");

 set.add("frutta");

 set.add("pasta");

 set.add("vino");

 263

 set.add("birra");

 set.add("acqua");

 System.out.println("lista: " + set);

 Iterator<String> iterator = set.iterator();

 while (iterator.hasNext())

 System.out.println(iterator.next());

 }

 }

 Output:

 Oppure inserendo un oggetto con Comparatore:

 public class Main {

 public static void main (String[] args) {

 SortedSet<Persona> set = new TreeSet<>();

 Persona p1 = new Persona("Bianchi" , "Mario" , "Via Firenze

 1");

 Persona p2 = new Persona("Rossi" , "Giorgio" , "Via Roma 2");

 set.add(p1);

 set.add(p2);

 set.add(new Persona("Rossi" , "Ambra" , "Via Milano 3"));

 Iterator<Persona> iterator = set.iterator();

 while (iterator.hasNext())

 System.out.println(iterator.next().toString());

 264

 }

 }

 public class Persona implements Comparable < Persona >{

 private final String cognome;

 private final String nome;

 private final String indirizzo;

 Persona(String cognome,String nome, String indirizzo){

 this .cognome=cognome;

 this .nome=nome;

 this .indirizzo=indirizzo;

 }

 @Override

 public int compareTo (Persona o) {

 int r = cognome.compareToIgnoreCase(o.cognome);

 if (r == 0) {

 r = nome.compareToIgnoreCase(o.nome);

 }

 return r;

 }

 @Override

 public String toString () {

 return "Persona{" + "cognome=" + cognome + ", nome="

 + nome + ", indirizzo=" + indirizzo + '}' ;

 }

 }

 Output:

 265

 Le mappe

 Una mappa permette di memorizzare degli elementi che possono essere trovati
 velocemente mediante delle chiavi. In particolare, una mappa memorizza coppie
 chiave-valore (k,v), chiamate entry, in cui:

 ● k: è la chiave.
 ● v è il valore a essa corrispondente.

 Inoltre ogni chiave è unica e così la corrispondenza tra chiavi e valori definisce una
 funzione (mapping). In una mappa che memorizza dei record studente (con nomi,
 indirizzi e classi frequentate dagli studenti), la chiave può essere costituita dal
 numero ID dello studente.

 Le chiavi (etichette) sono assegnate a valori (dischetti) da un utente. Le entry che ne
 risultano (dischetti etichettati) sono inserite in una mappa (contenitore). Le chiavi
 possono essere utilizzate in seguito per trovare oppure cancellare i valori.

 266

 Per gestire le mappe, Java mette a disposizione una serie strumenti che
 consentono di gestire liste di oggetti dinamiche e non ordinate. Le map sono
 composte da:

 ● interfacce che definiscono i metodi utili per la manipolazione delle collezioni di
 oggetti

 ● classi implementano le interfacce

 Le classi e interfacce fanno parte del package java.util. Tra i metodi per la
 manipolazione delle mappe di oggetti troviamo quelli che consentono la ricerca
 rapida di elementi all'interno della mappa.

 L'interfaccia Map<K.V> definisce tutti i metodi che devono essere implementati per
 la corretta gestione delle mappe. Le classi principali che implementano l'interfaccia
 Mao sono:

 HashMap - Hashtable - Properties - TreeMap

 267

 Un dizionario è un esempio di mappa:

 o la chiave è la parola che viene definita

 o Il valore è costituito dalla sua definizione e dall'etimologia

 Interface Map<K,V>

 268

 Parametri:

 K - il tipo di chiavi gestite da questa mappa

 V - il tipo di valori mappati

 Di seguito, alcuni metodi dell’interfaccia Map:

 V put(K k,V v) Associa, alla mappa, il valore specificato alla chiave specificata. Se la
 mappa conteneva già un'associazione per la chiave, il vecchio valore viene
 sostituito. Ritorna il valore precedentemente associato a key, oppure null se non vi
 era alcuna associazione riguardante key.

 boolean containsKey(K key) Determina se questo oggetto di tipo Map contiene
 un'associazione per la chiave specificata.

 Viene lanciata un eccezione:

 ClassCastException se la chiave specificata non può essere confrontata con le
 chiavi presenti nella mappa.

 NullPointerException se la chiave specificata è uguale a null se questa mappa usa
 l'ordinamento naturale, oppure il suo comparatore non consente l'uso di chiavi
 uguali a null.

 boolean containsValue(V value) Determina se questo oggetto di tipo Map contiene
 almeno un'associazione che coinvolga il valore specificato.

 V get(K key) Restituisce il valore associato alla chiave specificata all'interno di
 questo oggetto di tipo Map, altrimenti, restituisce null.

 Lancia un eccezione:

 ClassCastException se la chiave specificata non può essere confrontata con le
 chiavi presenti nella mappa.

 NullPointerException se la chiave specificata è uguale a null e questa mappa usa
 l'ordinamento naturale, oppure il suo comparatore non consente l'uso di chiavi
 uguali a null.

 269

 V remove(Object key) Elimina da questo oggetto di tipo Map l'associazione relativa
 alla chiave specificata, se tale associazione esiste. Ritorna il valore
 precedentemente associato alla chiave specificata, se tale chiave era associata a un
 valore; altrimenti, restituisce null.

 Lancia un eccezione:

 ClassCastException se la chiave specificata non può essere confrontata con le
 chiavi presenti nella mappa.

 NullPointerException se la chiave specificata è uguale a null e questa mappa usa
 l'ordinamento naturale, oppure il suo comparatore non consente l'uso di chiavi
 uguali a null.

 Set<Entry<k,V>> entrySet() Restituisce un oggetto di tipo Set contenente le coppie
 chiave-valore presenti in questo oggetto di tipo Map.

 Set<K> keySet() : Restituisce un insieme di tutte le chiavi di una mappa ad albero

 Collection<V> values(): Restituisce una collezione di tutti i valori contenuti nella
 mappa

 L’interfaccia Map non ha il metodo iterator(), per cui non è possibile scandire un
 oggetto di tipo Map se non tramite una "vista" come quella generata dal metodo
 entrySet(). A questo scopo, l’interfaccia Map ha un’interfaccia interna pubblica. Entry,
 che dispone dei metodi getKey() e getValue().

 Sono definiti anche i metodi keySet() e values(), che consentono, rispettivamente, di
 effettuare una scansione di un oggetto di tipo Map visto come insieme di chiavi o
 come raccolto di valori. Il termine “raccolta di valori” è più adeguato di “insieme di
 valori”, dal momento che ci possono essere valori duplicati.

 La classe HashMap

 La classe HashMap è un'implementazione dell'interfaccia Map. Sviluppata
 avvalendosi della struttura di dati di tipo mappa a sua volta implementata come
 tabella hash. Non garantisce alcun ordinamento e consente valori e chiavi nulle.

 Un'istanza di HashMap ha due parametri che ne influenzano le prestazioni:

 1. Capacità iniziale: il numero di voci nella tabella hash al momento della
 creazione.

 270

 2. load factor: è una misura di quante voci è possibile inserire nella la tabella
 hash prima che la sua capacità venga aumentata automaticamente.

 Quando il numero di voci nella tabella hash supera il prodotto del fattore di carico per
 la capacità corrente, la tabella hash viene rehashed (ovvero, le strutture di dati
 interne vengono ricostruite) in modo che la tabella hash abbia circa il doppio del
 numero di bucket.

 Come regola generale, il load factor predefinito (.75) offre un buon compromesso tra
 costi di spazio e tempo.

 Il numero previsto di voci nella mappa e il suo fattore di carico dovrebbero essere
 presi in considerazione quando si imposta la sua capacità iniziale, in modo da ridurre
 al minimo il numero di operazioni di rehash.

 La classe HashMap<K, V> implementa tutti i metodi dell'interfaccia Map<K, V>. Gli
 unici metodi in più sono i costruttori.

 public HashMap() Crea una nuova mappa vuota con capacità iniziale 16 e fattore di
 carico 0.75.

 public HashMap(int capacitaIniziale) Crea una nuova mappa vuota con capacità
 iniziale specificata e fattore di carico 0.75. Genera una IllegalArgumentException se
 capacitaIniziale è negativa.

 public HashMap(int capacitaIniziale, float fattoreDiCarico) Crea una nuova
 mappa vuota con capacità iniziale e fattore di carico specificati. Genera una
 IllegalArgumentException se capacitaIniziale è negativa o fattoreDiCarico è non
 positivo.

 public HashMap(Map<? extends K, ? extends V> m) Crea una nuova mappa
 contenente le stesse associazioni della mappa m. La capacità iniziale è impostata
 alle dimensioni di m e il fattore di carico a 0.75. Genera una NullPointerException se
 m è null.

 Le principali operazioni sulle mappe sono le seguenti:

 ● Inserzione di una nuova coppia (chiave, valore).
 ● Aggiornamento del valore associato ad una chiave.
 ● Eliminazione di una coppia (chiave, valore).
 ● Ricerca del valore associato ad una chiave.

 271

 Nella tabella è mostrato l'effetto di una serie di operazioni su una mappa inizialmente
 vuota, che deve contenere entry con chiavi intere e valori consistenti in un singolo
 carattere.

 Esempio: gestire una classifica con una mappa. Immaginiamo di voler gestire una
 classifica dei Piloti di Formula 1 attraverso una mappa in cui ciascuna entry sia
 rappresentata da:

 1. Una chiave che identifica il posizionamento del Pilota.
 2. Un valore (il nome del Pilota).

 import java.util.HashMap;

 import java.util.Map;

 public class Main {

 public static void main (String[] args) {

 Map<Integer, String> classifica = new HashMap<>();

 classifica.put(1 , "Senna");

 classifica.put(2 , "Prost");

 classifica.put(3 , "Mansell");

 classifica.put(4 , "Lauda");

 classifica.put(5 , "Patrese");

 272

 System.out.println("Classifica");

 for (Integer key:classifica.keySet())

 System.out.println(key+ " " +classifica.get(key));

 }

 }

 Output:

 public static void main (String[] args) {

 Map<Integer, String> classifica = new HashMap<>();

 classifica.put(1 , "Senna");

 classifica.put(2 , "Prost");

 classifica.put(3 , "Mansell");

 classifica.put(4 , "Lauda");

 classifica.put(5 , "Patrese");

 System.out.println("Size of Map " + classifica.size());

 System.out.println("La Map contiene l'elemento con key=1 " +

 classifica.containsKey(1));

 System.out.println("La Map contiene l'elemento con valore=Senna "

 + classifica.containsValue("Senna"));

 273

 System.out.println("La Map è Vuota? " + classifica.isEmpty());

 System.out.println("l'elemento con chiave 2 rimosso dalla Mappa è

 " + classifica.remove(2));

 System.out.println("Size of Map " + classifica.size());

 classifica.clear();

 System.out.println("Size of Map " + classifica.size());

 }

 }

 Output:

 Per sapere se all'interno di una "mappa" è contenuta una data chiave o un dato
 valore, si usano rispettivamente i due metodi "containsKey()" e "containsValue()", il
 primo dei quali riceve come parametro la chiave. Mentre il secondo il valore, e
 ritorna "true" se presente, altrimenti "false".

 Iterare le HashMap

 Esistono diversi modi per iterare una Map in Java. Vediamo questi metodi
 considerando i vantaggi e i svantaggi. Considerando che tutte le mappe in Java
 implementano l'interfaccia Map, le seguenti tecniche funzionano per qualsiasi
 implementazione mappa (HashMap, TreeMap, LinkedHashMap, Hashtable, etc.)

 Metodo 1 : Iterazione delle voci utilizzando un ciclo For-Each.

 Questo è il metodo più comune ed è preferibile nella maggior parte dei casi.
 Dovrebbe essere usato se si ha bisogno della coppia chiave-valore.

 Map<K, v> map = new HashMap<> 0 :

 for (Map.Entry<K,V> entry :map. entrySet()) {

 System.out.println("Key =" + entry. getKey()+ ", Value = " +

 entry.getvalue));

 274

 }

 Metodo 2: Iterazione su chiavi o valori utilizzando un ciclo For-Each.

 Se si ha bisogno solo di chiavi o solo dei valori si puoi eseguire ('iterazioni su keySet
 o value invece di entrySet.

 Map<K,V> map = new HashMap<>();

 for (K key : map.keySet()){

 System.out.println("Key = " + key);

 }

 for (V value : map.values()) {

 System.out.println("Value = " + value);

 }

 Questo metodo offre un leggero vantaggio in termini di prestazioni rispetto entrySet
 (circa il 10% più veloce) ed è più pulito.

 275

 Metodo 3: Tramite iterator

 Senza Generics

 Map map =newHashMap() ;

 Iterator itera = mappa.entrySet().iterator():

 while (itera.hasNext()){

 Map. Entry coppia = (Map.Entry) itera.next();

 System.out.println("Chiave: " coppia. getKey)+ ", valore:

 " +coppia.getValue());

 }

 276

 Uso di Generics:

 Map<K, V> map =newHashMap<>():

 Iterator<Map. Entry<K, V>> entries = map.entrySet

 ().iterator();

 while (entries.hasNext()){

 Map. Entry<K, V> entry =(Map.Entry<K,V>)entries.next();

 System.out.println("Key " + entry.getkey()+ ", Value" +

 entry. getValue());

 }

 Creato l'oggetto map si costruisce l'iteratore della collezione mappa.entrySet()
 richiamando il metodo "iterator().

 277

 Con il ciclo while si itera finché la collezione avrà elementi (hasNext() ritorna "true"
 se ci sono ancora elementi). Si crea un nuovo oggetto di tipo Map.Entry e tramite
 casting esplicito gli si assegna ciò che ritorna il metodo next() dell'iteratore.

 Si stampa il contenuto della collezione attraverso i metodi "getKey()" e "getValue()"
 che ritornano rispettivamente chiave e valore.

 public class Main {

 public static void main (String[] args) {

 Map<Integer, Character> alfa = new HashMap<>();

 System.out.println("la mappa alfa di dimensione " +

 alfa.size());

 alfa.put(1 , 'a');

 alfa.put(2 , 'b');

 alfa.put(7 , 'g');

 alfa.put(3 , 'd');

 alfa.put(4 , 'c');

 alfa.put(5 , 'e');

 alfa.put(21 , '1');

 alfa.put(8 , 'h');

 alfa.put(9 , 'i');

 // Usiamo iterator per visualizzare

 Set set = alfa.entrySet();

 Iterator iterator = set.iterator();

 while (iterator.hasNext()) {

 Map.Entry chiave_valore = (Map.Entry) iterator.next();

 System.out.println("La coppia chiave valore è: " +

 chiave_valore);

 }

 /* Get values based on key */

 char var = alfa.get(2);

 System.out.println("Il valore di chiave 2 : " + var);

 System.out.println(" ");

 /* rimuoviamo il valore 21 */

 alfa.remove(21);

 // modifichiamo te posizioni 3 e 4

 alfa.put(3 , 'c');

 alfa.put(4 , 'd');

 278

 System.out.println("la Mappa dopo l'aggiornamento :");

 Set set2 = alfa.entrySet();

 Iterator iterator2 = set2.iterator();

 while (iterator2.hasNext()) {

 Map.Entry entry2 = (Map.Entry) iterator2.next();

 System.out.print("Key is: " + entry2.getKey() + " Value is:

 ");

 System.out.println(entry2.getValue());

 }

 }

 }

 Codice

 Ordinamento HashMap

 HashMap non conserva alcun ordine per impostazione predefinita. Se c'è una
 necessità, dobbiamo ordinarla in modo esplicito in base al requisito. Vediamo come
 ordinare HashMap per :

 ● chiavi usando TreeMap
 ● •valori usando Comparator .

 HashMapOrdinamento per chiavi

 Nel caso di una TreeMap le chiavi devono essere oggetti confrontabili. Questo
 requisito si ottiene facendo in modo che la classe che rappresenta le chiavi
 implementi l'interfaccia Comparable, oppure utilizzando un costruttore di TreeMap
 che accetti come input un oggetto di una classe che implementi l'interfaccia
 Comparator.

 279

https://replit.com/@RolandoSucco/Hashmap-iteratore#Main.java

 Interface SortedMap<K,V)

 Comparator<? super K> comparator(): Restituisce il comparatore utilizzato per
 ordinare le chiavi in questa mappa, o null se questa mappa utilizza l'ordinamento
 naturale delle sue chiavi.

 280

 SortedMap<K,V> headMap(K toKey) : Restituisce una vista della porzione di
 questa mappa le cui chiavi sono rigorosamente minori di toKey.

 SortedMap<K,V> subMap(K fromKey, K toKey): Restituisce una vista della
 porzione di questa mappa le cui chiavi vanno da fromKey, inclusivo, a toKey,
 esclusivo.

 S ortedMap<K,V> tailMap(K fromKey): Restituisce una vista della porzione di
 questa mappa le cui chiavi sono maggiori o uguali a fromKey.

 K firstKey(): Restituisce la prima chiave (più bassa) attualmente in questa mappa.

 K lastKey(): Restituisce l'ultima chiave (più alta) attualmente in questa mappa.

 La Classe TreeMap<K,V>

 Questa è la classe concreta che permette di implementare una mappa ordinata
 utilizzando come chiavi classi che producono oggetti confrontabili.

 public class TreeMap extends AbstractMap implements NavigableMap, Cloneable,
 Serializable

 Costruttori

 TreeMap(): Crea una mappa vuota che verrà ordinata utilizzando l'ordine naturale
 delle sue chiavi.

 TreeMap(Comparator comp): Crea un oggetto TreeMap vuoto in cui gli elementi
 sono ordinati secondo la specifica data dal comparatore.

 TreeMap(Map m): Crea una TreeMap con le voci della mappa che verranno ordinate
 usando l'ordine naturale delle chiavi.

 TreeMap(SortedMap sm) : Crea una TreeMap con le voci della mappa ordinata data
 che verranno archiviate nello stesso ordine della mappa ordinata data.

 281

 Metodi

 La TreeMapclasse fornisce vari metodi che ci consentono di eseguire operazioni
 sulla mappa.

 1 Inserimento

 ● V put(K k,V v) - inserisce la mappatura chiave/valore specificata (voce)
 nella mappa

 ● void putAll(Map<K,V> m) - inserisce tutte le voci dalla mappa
 specificata a questa mappa

 ● V putIfAbsent(K, k, V v) - inserisce la mappatura chiave/valore
 specificata nella mappa se la chiave specificata non è presente nella
 mappa

 import java.util.TreeMap;

 class Main {

 public static void main (String[] args) {

 // Creare la mappa

 TreeMap<String, Integer> numeri = new TreeMap<>();

 // Uso put()

 numeri.put("Quatto" , 4);

 numeri.put("Due" , 2);

 // uso putIfAbsent()

 numeri.putIfAbsent("Sei" , 6);

 System.out.println("La mappa numeri: " + numeri);

 //Creare TreeMap da numeri

 TreeMap<String, Integer> numeri1 = new TreeMap<>();

 numeri.put("Uno" , 1);

 // uso di putAll()

 numeri1.putAll(numeri);

 System.out.println("la Mappa numeri1: " + numeri1);

 }

 }

 output:

 282

 2 Accesso agli elementi

 Set<Entry<k,V>> entrySet(): Restituisce un oggetto di tipo Set contenente le
 coppie chiave-valore presenti in questo oggetto di tipo Map.

 Set<K> keySet() : Restituisce un insieme di tutte le chiavi di una mappa ad albero

 Collection<V> values(): Restituisce una collection di tutti i valori

 import java.util.TreeMap;

 class Main {

 public static void main (String[] args) {

 // Creare la mappa

 TreeMap<String, Integer> numeri = new TreeMap<>();

 // Uso put()

 numeri.put("Uno" , 1);

 numeri.put("Quatto" , 4);

 numeri.put("Due" , 2);

 // uso putIfAbsent()

 numeri.putIfAbsent("Sei" , 6);

 // Uso entrySet()

 System.out.println("Key/Value mappings: " +

 numeri.entrySet());

 // uso keySet()

 System.out.println("Keys: " + numeri.keySet());

 // uso values()

 System.out.println("Values: " + numeri.values());

 }

 }

 Output:

 3 Rimuovere gli elementi

 283

 remove(key) - restituisce e rimuove la voce associata alla chiave specificata da una
 TreeMap

 remove(key, value) - rimuove la voce dalla mappa solo se la chiave specificata è
 associata al valore specificato e restituisce un valore booleano

 import java.util.TreeMap;

 class Main {

 public static void main (String[] args) {

 // Creare la mappa

 TreeMap<String, Integer> numeri = new TreeMap<>();

 // Uso put()

 numeri.put("Uno" , 1);

 numeri.put("Quatto" , 4);

 numeri.put("Due" , 2);

 // uso putIfAbsent()

 numeri.putIfAbsent("Sei" , 6);

 System.out.println("La mappa: " + numeri);

 // remove method

 int value = numeri.remove("Due");

 System.out.println("Rimosso value: " + value);

 // remove method con due parametri

 boolean result = numeri.remove("Quattro" , 3);

 System.out.println("è stato rimosso {Quattro=3} ? " +

 result);

 System.out.println("La nuova mappa: " + numeri);

 }

 }

 Output:

 284

 4 Sostituisci gli elementi di TreeMap

 replace(key, value) - sostituisce il valore mappato da quello specificato chiave con il
 nuovo valore

 replace(key, old, new) - sostituisce il vecchio valore con il nuovo valore solo se il
 vecchio valore è già associato alla chiave specificata

 replaceAll(function) - sostituisce ogni valore della mappa con il risultato di quello
 specificato funzione

 import java.util.TreeMap;

 class Main {

 public static void main (String[] args) {

 // Creare la mappa

 TreeMap<String, Integer> numeri = new TreeMap<>();

 // Uso put()

 numeri.put("Uno" , 1);

 numeri.put("Quatto" , 4);

 numeri.put("Due" , 2);

 numeri.put("Tre" , 3);

 // uso putIfAbsent()

 numeri.putIfAbsent("Sei" , 6);

 System.out.println("La mappa: " + numeri);

 // Uso di replace()

 numeri.replace("Tre" , 11);

 numeri.replace("Uno" , 1 , 15);

 System.out.println("Nuova mappa " + numeri);

 // Uso replaceAll()

 numeri.replaceAll((key, valore) -> valore% 2);

 System.out.println("TreeMap dopo replaceAll: " + numeri);

 }

 }

 Output:

 285

 Poiché la classe TreeMap implementa NavigableMap, fornisce vari metodi per
 navigare sugli elementi della mappa.

 286

 Iinput-output da File

 I programmi hanno bisogno di utilizzare informazioni lette da fonti esterne, o inviare
 informazioni a destinazioni esterne (file, dischi, reti, memorie o altri programmi).

 In Java, l'I/0 è gestito in termini di flussi di dati. Un flusso di dati (generalmente
 indicato con il termine inglese stream) può essere costituito da caratteri, numeri o
 generici byte. Se i dati fluiscono nel programma, lo stream è detto stream di input.
 Se, al contrario, i dati fluiscono dal programma, lo stream è detto stream di output.

 Gli stream sono realizzati come istanze di alcune classi. Gli oggetti di tipo Scanner,
 utilizzati per leggere dati da tastiera, sono degli stream di input. L'oggetto
 System.out è un esempio di stream di output.

 Per prelevare informazioni da una fonte esterna (un file, una rete etc…), un
 programma deve aprire uno stream su essa e leggerne le informazioni in maniera
 sequenziale. Allo stesso modo un programma può inviare ad una destinazione
 esterna aprendo uno stream su essa e scrivendo le informazioni sequenzialmente.

 287

 Il package java.io contiene una collezione di classi che supportano tali algoritmi di
 I/O. Le classi di tipo stream sono divise in due gerarchie separate (anche se simili) in
 base al tipo di informazione che devono trasportare:

 1. 1.classi basate sui byte
 2. 2.classi basate sui caratteri

 Il flusso di byte viene utilizzato per leggere e scrivere un singolo byte (8 bit) di dati.

 Tutte le classi di flusso di byte derivano da classi astratte di base chiamate
 InputStreame OutputStream.

 Il flusso di caratteri viene utilizzato per leggere e scrivere un singolo carattere di dati.

 288

 Tutte le classi del flusso di caratteri derivano da classi astratte di base Reader e
 Writer.

 In questo capitolo verranno visti stream che consentiranno di collegare un
 programma a dei file, anziché a tastiera e schermo. Quindi prima di analizzare le
 classi di I/O vediamo come si gestisce un File in java.

 Introduzione alla gestione dei file

 Per lavorare con i file Java mette a disposizione diverse classi che consentono di:

 1. creare file e directory

 2. cercare file e directory

 3. rinominare file e directory

 4. cancellar e file e directory

 5, scrive e all'interno di un file

 6. leggere il testo contenuto in un file

 Le classi principali si trovano nel package java.io e sono:

 289

 La Classe File:

 Questa classe permette di creare, eliminare, rinominare e cercare un file o una
 directory (e sottodirectory).

 I costruttori della classe File sono i seguenti:

 ● File(String pathname)
 ● File(String dir, String subpath)
 ● File(File dir, String subpath)

 Di seguito qualche esempio:

 ● File dir = new File("/usr" "local"): //istanzia di una directory e un file su un
 sistema Unix

 ● File file = new File(dir, "Abc.java");//istanzia di una directory e un file su un
 sistema Windows

 ● File dir2 = new File("C:directory"):

 • File file2 = new File(dir2. "Abc.iava"):

 È possibile utilizzare il separatore per il path dei file per i vari sistemi operativi in
 maniera dipendente, ma anche utilizzare come separatore "/" pure su sistemi
 Windows. La scelta migliore è utilizzare la costante statica della classe File
 (dipendente dal sistema operativo):

 File.pathSeparator
 che vale:

 "'\\" per Windows "/" e Unix.

 Per esempio:

 File file = new File("'." + File.pathSeparator + "abc.iava")

 Istanziare un file non significa però crearlo fisicamente sul file system; per farlo è
 necessario utilizzare gli stream.

 I metodi principali sono:
 290

 import java.io.*;

 import java.util.Scanner;

 public class file {

 public static void main (String arg[]){

 System.out.println("\n\n\n Immetti il nome del file

 cercato:");

 Scanner tastiera= new Scanner(System.in);

 String nome=tastiera.nextLine() ;

 File f= new File(nome); // (4)

 if (!f.exists()) System.out.println("NON ESISTE il file

 " +nome); // (5)

 else {

 long dim=f.length(); // (6)

 System.out.print("Il file: " +nome+ " e' lungo:" +dim+ "

 byte.");

 if (f.canWrite()) // (7)

 System.out.println(" E' di lettura e scrittura.");

 else System.out.println(" E' di sola lettura.");

 }

 }

 }

 L'oggetto di tipo File può essere utilizzato anche per riferirsi alle directory. Per
 esempio:

 291

 File directory = new File("c: \\windows");

 Con le directory, oltre ai metodi elencati precedentemente, si possono utilizzare
 anche i seguenti:

 Ottenere l'elenco di directory

 Per visualizzare il contenuto di una directory si può utilizzare l'oggetto File in due
 modi diversi:

 1. chiamando il metodo list() senza argomenti per ottenere il contenuto completo
 dell'oggetto File.

 i
 mport java.io.*;

 public class directory {

 public static void main (String arg[]){

 File f= new File(".");

 File a[]=f.listFiles();

 for (int i= 0 ; i<a.length;i++){

 String s=a[i].toString();

 System.out.println(a[i].getName());

 }

 }

 }

 2) usare list(FilenameFIter a) che accetta il parametro java.io.FilenameFilter e
 consente di filtrare i file e le cartelle per visualizzare un elenco limitato, per esempio
 dei soli file con estensione class.

 292

 i
 mport java.util.regex.*;

 import java.io.*;

 import java.util.*;

 public class DirList {

 public static void main (String[] args) {

 File path = new File(".");

 String[] list;

 if (args.length == 0) {

 list = path.list();

 } else {

 list = path.list(new DirFilter(args[0]));

 }

 Arrays.sort(list, String.CASE_INSENSITIVE_ORDER);

 for (String dirItem : list) {

 System.out.println(dirItem);

 }

 }

 }

 class DirFilter implements FilenameFilter {

 private Pattern pattern;

 public DirFilter (String regex) {

 pattern = Pattern.compile(regex);

 }

 public boolean accept (File dir, String name) {

 return pattern.matcher(name).find();

 }

 }

 I metodi per modificare i file:

 293

 Istanziare un file non significa però crearlo fisicamente sul file system; per farlo è
 necessario utilizzare gli stream.

 File di testo e file binari

 I file trattati da Java possono essere classificati in due categorie:

 • file di testo

 • binario

 Ognuno dei due tipi di file ha i propri stream e metodi per elaborarli. Il tipo di file,
 determina quali classi debbano essere utilizzate per l'input e per l'output. Il vantaggio
 principale dei file di testo è che è possibile crearli, visualizzarli e modificarli
 utilizzando un editor di testi. Per un file binario, le operazioni di lettura e scrittura
 devono generalmente essere eseguite da un programma apposito. In un file di testo
 ogni carattere è rappresentato per mezzo di uno o due bvte. a seconda che il
 sistema utilizzi la codifica ASCII o Unicode. Quando un programma scrive un valore
 in un file di testo, il numero di caratteri che vengono scritti è lo stesso che si avrebbe
 scrivendo lo stesso valore su schermo per mezzo del metodo System.out. println.
 Per esempio, la scrittura in un file di testo del numero 1345 comporta la scrittura di
 quattro caratteri nel file, come mostrato nella Figura.

 294

 I file binari immagazzinano tutti i valori dello stesso tipo primitivo nello stesso
 formato. Ogni valore è quindi salvato come sequenza dello stesso numero di byte.
 Per esempio, i valori di tipo int occupano ognuno quattro byte. Un programma Java
 interpreta questi byte in modo molto simile a quanto fa con i dati nella memoria
 principale. E per questo motivo che la gestione dei file binari è molto efficiente.

 File di testo

 Vediamo le operazioni di I/O sui file di testo.

 Le 4 classi base astratte forniscono dei metodi generici per leggere e scrivere "flussi"
 di dati dall'input e verso l'output.

 Le classi derivate si dividono in due categorie, specializzate in due sensi:

 1. classi (dette sorgenti) che, senza aggiungere funzionalità, specializzano le classi
 astratte rispetto alla sorgente/destinazione destinazione dei flussi.

 o Per l'input. il flusso può diventare un file o un buffer:

 o Per l'output, il flusso può diventare un file o un buffer;

 2. classi (dette di filtraggio) che, non preoccupandosi della sorgente/destinazione dei
 flussi, specializzano e aumentano le funzionalità delle classi astratte per fare in
 modo di poter leggere/scrivere non più soltanto stram di byte o di caratteri, ma dati
 strutturati, quali:

 - i tipi primitivi di Java;

 - interi oggetti;

 inoltre, ci sono classi che specializzano le funzionalità permettendo forme complesse
 di filtraggio ed elaborazione dei dati.

 Per usare l'I/O, si tratta di "comporre" le classi concrete che ci interessano in modo
 da avere un oggetto che presenti tutte le funzionalità richieste. Si utilizza il metodo
 dell'incapsulamento:

 - si crea un oggetto da una classe sorgente, per definire il flusso specifico dei dati;

 295

 ● si crea un oggetto da una classe di filtraggio concreta del secondo tipo, e si
 passa al costruttore l'oggetto stream prima creato (come per incapsularlo
 dentro)

 ● si possono poi eseguire ulteriori incapsulamenti della classe di filtraggio in
 un'altra classe di filtraggio al fine di ottenere, tramite successivi
 incapsulamenti, tutte le funzionalità previste.

 Scrittura di un File di Testo

 java.io.FileWriter
 La classe FileWriter permette di scrivere i caratteri in un file di testo.

 Costruttori

 public FileWriter(String fileName): Crea un oggetto FileWriter a cui viene
 assegnato un nome file se il file esiste viene eliminato.

 public FileWriter(String fileName, boolean append) : Crea un oggetto FileWriter a
 cui viene assegnato un nome file con un valore booleano che indica se è true, i dati
 verranno scritti alla fine del file anziché all'inizio.

 public FileWriter(File file): Crea un oggetto FileWriter dato un oggetto File se il file
 esiste viene eliminato.

 296

 public FileWriter(File file, boolean append): Crea un oggetto FileWriter dato un
 oggetto File. Se il secondo argomento è true, i byte verranno scritti alla fine del file
 anziché all'inizio.

 I costruttori generano una IOException -se il file indicato esiste ma è una directory
 anziché un file normale, non esiste e non può essere creato o non può essere aperto
 per nessun altro motivo

 Metodi

 public Writer append(char c): inserisce il carattere specificato nello stream
 corrente

 public void flush(): forza a scrivere tutti i dati presenti nello stream alla destinazione
 corrispondente

 public void close() - chiude lo stream

 public void write(int a): Scrive un singolo carattere. Il carattere da scrivere è
 contenuto nei 16 bit di ordine inferiore del valore intero dato; i 16 bit di ordine
 superiore vengono ignorati.

 public void write(char c[]) //scrive un arrayd i caratteri

 public void write(String str): scrive una stringa

 public void write(char c[],int offset, int length) //scrive lenght caratteri di c[]
 iniziando da offeset

 public void write(string str, int offset, int length)

 Lanciano una IndexOutOfBoundsException- Se offset è negativo, o length è
 negativo, o offset+length è negativo o maggiore della lunghezza della stringa o array
 dato.

 297

 Tutti i metodi lanciano una IOException - Se si
 verifica un errore di I/O

 Per aprire un file di testo, tipicamente si crea un oggetto di tipo FileWriter

 FileWriter f= new FileWriter ("prova.txt"): crea uno stream f per scrivere sul file
 prova.txt.

 L'istruzione crea uno stream f per scrivere sul file prova.txt. Rappresentando
 graficamente gli stream si ottiene la seguente figura:

 Se il file prova.txt esiste viene sovrascritto e viene cancellato tutto il suo contenuto.

 Se si vuole aprire un file esistente, per accodare dei valori, si deve sostituire la
 creazione del FileWriter nel seguente modo:

 FileWriter file = new FileWriter("prova.txt", true): Il valore del secondo parametro
 indica la condizione di accodamento (append), se true il file viene aperto per
 aggiungere i dati in coda a quelli preesistenti. Altrimenti se false, il file viene aperto in
 scrittura e ciò comporta la cancellazione di un eventuale archivio preesistente.

 Esempio:

 import java.io.FileWriter;

 import java.io.Writer;

 298

 public class Main {

 public static void main (String args[]) {

 String data = "Ciao Mondo" ;

 File f = new File("prova.txt");

 try {

 // Crea Writer usando FileWriter

 Writer output = new FileWriter(f);

 // Writes string to the file

 output.write(data);

 output.write("\n"); //a capo

 output.write(49); // scrive il carattere 1

 output.append('0'); //aggiunge il carattere 0

 // chiusura di writer

 output.close();

 }

 catch (Exception e) {

 e.getStackTrace();

 }

 }

 }

 Output nel file prova.txt

 Lo stream precedente si può migliorare incapsulano lo stream tramite le classi:

 BufferedWriter: Che è simile alla classe FileWriter ma permette di scrivere i
 caratteri nel file in blocchi. I caratteri vengono memorizzati temporaneamente in un
 buffer temporaneo. Periodicamente i caratteri vengono letti dal buffer e scritti
 fisicamente sul file, quindi, le prestazioni migliorano notevolmente.

 299

 PrintWriter è simile alla classe BufferedWriter ma permette di scrivere nel file
 stringhe formattate.

 In questo caso per aprire un file di testo, si crea un oggetto di tipo FileWriter

 FileWriter f= new FileWriter ("agenda.txt"):// crea uno stream f per scrivere sul file
 agenda.txt.

 A sua volta, FileWriter è incapsulato in un oggetto di tipo PrintWriter. Quindi:

 PrintWriter fOUT = new PrintWriter(f) ://si scrive su questo

 Della classe PrintWriter si possono utilizzare i metodi:

 print(). printIn0) e printf() per scrivere caratteri in un file aperto con successo.

 Esempio:

 import java.io.File;

 import java.io.FileWriter;

 import java.io.IOException;

 import java.io.PrintWriter;

 public class Main {

 public static void main (String[] args) {

 File f = new File("agenda.txt");

 try {

 FileWriter out= new FileWriter(f);

 PrintWriter output= new PrintWriter(out);

 output.println("Rossi Mario 03456722122");

 300

 output.println("Bianchi Marita 03224567");

 output.println("Fantozzi Ugo 0654346744");

 output.println("Silvani Anna 05466824567");

 output.flush();

 output.close();

 } catch (IOException ex) {

 System.out.println("errore nella scrittura del file");

 }

 }

 }

 Output:

 Inoltre questa classe contiene il costruttore:

 PrintWriter(File file) che permette di scrivere su un file senza incapsulare un'altro
 stream.

 Lettura di un file di testo

 La classe Reader del pacchetto java.io è una superclasse astratta che rappresenta
 un flusso di caratteri.

 Poiché Reader è una classe astratta, non è utile di per sé. Tuttavia, le sue
 sottoclassi possono essere utilizzate per leggere i dati.

 301

 La classe FileReader

 L'apertura di un file di testo per le operazioni d'input, viene eseguita con la
 dichiarazione dell'oggetto FileReader.

 Costruttori

 FileReader(File file): Crea un nuovo FileReader , dato il File da cui leggere.

 FileReader(FileDescriptor fd): Crea un nuovo FileReader , data la FileDescriptor da
 cui leggere.

 FileReader(String fileName): Crea un nuovo FileReader , dato il nome del file da cui
 leggere.

 I costruttori lanciano un eccezione FileNotFoundException - se il file indicato non
 esiste, è una directory piuttosto che un file normale, o per qualche altro motivo non
 può essere aperto per la lettura.

 Metodi di lettura

 boolean ready() - verifica se lo stream è pronto per essere letto

 int read(char[] array) - legge i caratteri dal flusso e li memorizza nell'array specificato

 int read(char[] array, int start, int length) - legge il numero di caratteri pari a
 lunghezza dal flusso e archivia nell'array specificato a partire da inizio

 void mark(int a) - segna la posizione nel flusso fino a cui sono stati letti i dati
 302

 void reset() - riporta il controllo al punto del flusso in cui è impostato il contrassegno

 long skip(long n) - elimina il numero di caratteri specificato dallo stream

 I metodi lanciano una IOException - se si verifica un errore di I/O

 L'istruzione:

 Reader file = new FileReader("agenda.txt");

 crea un flusso dal file verso il programma.

 Esempio:

 public class Main {

 public static void main (String[] args) {

 File f = new File("agenda.txt");

 try {

 char [] a = new char [48];

 Reader input = new FileReader(f);

 input.read(a);

 System.out.print(a);

 char car = ' ' ;

 int i;

 while ((i = input.read()) != - 1) {

 System.out.print((char) i);

 }

 303

https://docs.oracle.com/javase/7/docs/api/java/io/IOException.html

 } catch (IOException ex) {

 System.out.println("errore di I/O");

 }

 }

 }

 Output:

 Per migliorare le prestazioni e agevolare la lettura di Stringhe si decorala lo stream
 FileReadere tramite la classe BufferedReader.

 FileReader file = new FilelnputStream("agenda.txt");

 BufferedReader fileln = new BufferedReader(file);

 La prima riga crea uno stream file per leggere dal file agenda.txt. Le operazioni di
 lettura non vengono fatte direttamente su questo stream, ma sul secondo stream
 creato dalla classe BufferedReader, che contiene i metodi per la lettura dei dati
 memorizzati.

 Rappresentando graficamente gli stream si ottiene la seguente figura:

 304

 Per leggere le informazioni contenute in un file di testo si usano due metodi della
 classe BufferedReader:

 o read(): legge un singolo carattere, ma come valore di ritorno restituisce un intero
 (-1 quando viene raggiunta la fine del file). Per ottenere il carattere letto si deve
 effettuare il casting: char c = (char) fileln.readO;

 o readLine(): legge una riga di testo e come valore di ritorno restituisce una stringa.
 Se è stata raggiunta la fine del file il metodo restituisce un valore null.

 La chiusura di uno stream, sia di input che di output, viene fatta richiamando il
 metodo close nel seguente modo:

 f.close();

 public class Main {

 public static void main (String[] args) {

 File f = new File("agenda.txt");

 try {

 FileReader in = new FileReader(f);

 BufferedReader input= new BufferedReader(in);

 String s= null ;

 while ((s = input.readLine()) != null) {

 System.out.println(s);

 }

 } catch (IOException ex) {

 System.out.println("errore di I/O");

 }

 }

 }

 Codice di Esempio di un agenda

 305

https://replit.com/@RolandoSucco/File-agenda#Main.java

 Un altra possibilità per leggere in un file di testo è usare la classe Scanner passando
 come argomento il file da leggere.

 Scanner leggi=new Scanner(new File("agenda.txt"));

 Nuovo I/O – Lettura di testo

 Per compiere operazioni sui file la classe principale di riferimento si chiama Files
 localizzata nel package java.nio.file. Questa classe offre un ricco set di metodi statici
 (oltre 50 escludendo quelli ereditati da Object) per leggere, scrivere e manipolare
 file e directory.

 Il metodo readAllLines() che utilizza la codifica dei caratteri predefinita è stato
 introdotto in jdk1.8 permette di leggere un file di testo in un'unica istruzione.

 public class Main {

 public static void main (String[] args) {

 File f= new File("agenda.txt");

 306

 try {

 List<String> lista= Files.readAllLines(f.toPath());

 for (String s: lista)

 System.out.println(s);

 } catch (IOException ex) {

 System.out.println("Errore i/o");

 }

 }

 }

 Codice agenda nio

 File binario

 Per scrivere su un file binario si fa riferimento alla classe OutputStream del
 pacchetto java.io che è una super classe astratta che rappresenta un flusso di output
 di byte.

 Poiché OutputStreamè una classe astratta, non è utile di per sé. Tuttavia, le sue
 sottoclassi possono essere utilizzate per scrivere dati.

 La classe:

 307

https://replit.com/@RolandoSucco/File-agenda-3#agenda.txt

 FileOutputStream
 permette di scrivere in un file di byte.

 Costruttori

 FileOutputStream (File f): Crea uno stream di output per scrivere nel file
 rappresentato dall'oggetto File specificato.

 FileOutputStream (String nome): Crea uno stream di output per scrivere nel file
 col nome specificato.

 FileOutputStream (FileDescriptor fd): Crea uno stream di output per scrivere nel file
 specificato.

 FileOutputStream (File f, boolean append): Crea uno stream di output per scrivere
 nel file rappresentato dall'oggetto File specificato.

 FileOutputStream (String nome, boolean append): Crea uno stream di output per
 scrivere nel file rcol nome specificato.

 append- se true, i byte verranno scritti alla fine del file anziché all'inizio se è false il
 file esistente viene eliminato

 I costruttori lanciano una FileNotFoundException - se il file esiste ma è una directory
 anziché un file normale, non esiste ma non può essere creato o non può essere
 aperto per nessun altro motivo.

 Metodi

 void close() Chiude lo Stream. IOException - se si verifica un errore di I/O

 void write (byte[] b) Scrive l'array di byte specificata. IOException - se si verifica un
 errore di I/O. IOException - se si verifica un errore di I/O

 void write (byte[] b, int off, int len) Scrive i len byte dall'array di byte specificato a
 partire dall'offset off.

 void write (int b) Scrive il byte specificato. IOException - se si verifica un errore di
 I/O

 308

 L'apertura di un file strutturato per le operazioni di output, viene eseguita con le
 dichiarazioni dei seguenti oggetti:

 FileOutputStream file = new FileOutputStream ("agenda.dat");

 comandi, se il file esiste viene sovrascritto e viene cancellato tutto il suo contenuto.
 Se si vuole aprire un file esistente, per accodare dei valori, si deve sostituire la
 creazione del FileOutputStream nel seguente modo:

 FileOutputStream f = new FileOutputStream("agenda.dat", true);

 Il valore del secondo parametro indica la condizione di accodamento (append):

 ● true il file viene aperto per aggiungere i dati in coda a quelli preesistenti.
 ● false (o non presente): il file viene aperto in scrittura e ciò comporta la

 cancellazione di un eventuale archivio preesistente.

 import java.io.FileOutputStream;

 import java.io.IOException;

 import java.io.OutputStream;

 public class Main {

 public static void main (String[] args) {

 309

 String data = "ciao mondo" ;

 try {

 OutputStream out = new FileOutputStream("prova.dat");

 // Convert la stringa in un array di bytes

 byte [] dataBytes = data.getBytes();

 //scrittura nello stream

 out.write(dataBytes);

 //scrittura del carattere 1

 out.write(49);

 // chiusura dello stream

 out.close();

 } catch (IOException ex) {

 System.out.println("Errore i/o");

 }

 }

 }

 Per migliorare le prestazioni e permettere di scrivere interi oggetti e dati primitivi si
 incapsula l'oggetto FileOutputStream usando la classe:

 ObjectOutputStream

 Costruttore

 public ObjectOutputStream (OutputStream out) Crea un ObjectOutputStream
 che scrive nell'OutputStream specificato. Lancia:

 ● IOException - se si verifica un errore di I/O durante la scrittura
 ● SecurityException - se la sottoclasse non attendibile sovrascrive illegalmente i

 metodi sensibili alla sicurezza
 ● NullPointerException- se lo out è null

 Si possono utilizzare diversi metodi per la scrittura. Ogni metodo memorizza su file
 un particolare tipo di dato e assume la forma

 310

 writeDato
 .Al posto di Dato si sostituisce il tipo di dato che si vuole memorizzare. Per esempio:

 fileOut.writeInt(25400);

 fileOut.writeDouble(12.36);
 Prima di chiudere il file è importante eseguire il metodo flush, che serve per
 scrivere su disco tutti i dati che sono attualmente contenuti nel buffer dello stream. Il
 metodo di scrittura più importante è

 writeObject
 Con questo metodo è possibile salvare su di un file anche gli oggetti memorizzando
 tutti i suoi attributi non statici. Una classe, le cui istanze si vogliono rendere
 persistenti, deve implementare l'interfaccia Serializable.

 FileOutputStream file = new FileOutputStream ("elenco.dat");

 ObjectOutputStream fileOut = new ObjectOutputStream(file);

 import java.io.FileOutputStream;

 import java.io.IOException;

 import java.io.ObjectOutputStream;

 import java.io.OutputStream;

 public class Main {

 311

 public static void main (String[] args) {

 String data = "ciao mondo" ;

 try {

 OutputStream f = new

 FileOutputStream("prova.dat");

 ObjectOutputStream out = new

 ObjectOutputStream(f);

 //scritturadi una stringa

 out.writeUTF(data);

 //scrittura di un intero

 out.writeInt(49);

 //scrittura di un Double

 out.writeDouble(49.54);

 out.flush();

 // chiusura dello stream

 out.close();

 } catch (IOException ex) {

 System.out.println("Errore i/o");

 }

 }

 }

 Input File Binario

 Per aprire uno stream di byte in input si fa uso della classe

 InputStream
 del pacchetto java.io.

 Poiché InputStream è una classe astratta, non è utile di per sé. Tuttavia, le sue
 sottoclassi possono essere utilizzate per leggere i dati.

 312

 Per leggere da un file si utilizza la classe

 FileInputStream

 Costruttori

 FileInputStream(File file) Crea uno Stream sul file effettivo, indicato dall'oggetto
 File passato come parametro.

 FileInputStream(FileDescriptor fdObj) Crea uno Stream utilizzando il descrittore
 di file fdOb.

 FileInputStream(String nome) Crea uno Stream sul file dal nome.

 Viene lanciata una FileNotFoundException - se il file non esiste, è una directory
 piuttosto che un file normale, o per qualche altro motivo non può essere aperto in
 lettura.

 Metodi

 int available() Restituisce una stima del numero di byte rimanenti che possono
 essere letti (o ignorati) nello stream di input senza essere bloccati dalla chiamata
 successiva di un metodo.

 void close() Chiude lo stream.

 int read() Legge un byte di dati dallo stream. Ritorna: il byte di dati o -1se viene
 raggiunta la fine del file.

 313

 int read(byte[] b) Legge un'array di byte dallo stream. Ritorna: il numero totale di
 byte letti nel buffer, o -1se non ci sono più dati perché è stata raggiunta la fine del file

 int read(byte[] b, int offset, int len) Legge fino a len byte di dati partendo
 dall'offset. Ritorna: il numero totale di byte letti nel buffer, o -1se non ci sono più dati
 perché è stata raggiunta la fine del file

 long skip(long n) Salta ed elimina n byte di dati dallo stream. Ritorna:il numero
 effettivo di byte ignorati.

 Viene Lanciata una IOException - se si verifica un errore di I/O.

 L'apertura di un file strutturato per le operazioni di input, viene eseguita con le
 dichiarazioni dell'oggetto:

 FilelnputStream in = new FilelnputStream ("elenco.dat");

 public class Main {

 public static void main (String[] args) {

 try {

 InputStream input = new FileInputStream("prova.dat");

 // Read byte from the input stream

 int i;

 while ((i=input.read())!=- 1)

 System.out.print((char)i);

 314

 // Close the input stream

 input.close();

 } catch (IOException ex) {

 System.out.println("Errore i/o");

 }

 }

 }

 Questa classe può essere usata insieme alla classe FileOutputStream per fare delle
 copie di un file.

 Per migliorare le prestazioni e la semplicità del codice si incapsula l'oggetto
 FileInputStream tramite la classe

 ObjectInputStream
 FilelnputStream file = new FilelnputStream ("elenco.dat");

 ObjectInputStream fileln = new ObjectlnputStream(file);

 Per leggere le informazioni contenute in un file strutturato, si usano i metodi della
 classe ObjectInputStream. Questi metodi assumono la forma

 readDato
 dove al posto di Dato si sostituisce il tipo di dato che si vuole leggere. Per evitare di

 ottenere inconsistenza, i dati devono essere letti nello stesso ordine in cui sono stati
 salvati.

 315

 Tra i metodi di lettura c'è il metodo readObject che consente di recuperare un
 oggetto precedentemente salvato.

 Questo metodo restituisce un oggetto di classe Object che attraverso il casting può
 essere riportato alla sua classe originaria. La lettura di un oggetto comporta la
 creazione di una nuova istanza della classe, in cui a ogni attributo viene assegnato il
 valore letto dal file.

 Se non si conosce quanti sono i dati contenuti nel file, si può usare un ciclo infinito
 per continuare a leggere finché viene generata l'eccezione EOFException. Questa
 eccezione segnala che si è raggiunta la fine del file e non ci sono più dati da leggere;
 si può quindi interrompere.

 public class Main {

 public static void main (String[] args) {

 try {

 InputStream in = new FileInputStream("prova.dat");

 ObjectInputStream input= new ObjectInputStream(in);

 String s=input.readUTF();

 System.out.println(s);

 int i=input.readInt();

 System.out.println(i);

 double d=input.readDouble();

 System.out.println(d);

 // Close the input stream

 input.close();

 } catch (IOException ex) {

 System.out.println("Errore i/o");

 }

 }

 }

 Output:

 ciao mondo

 316

 49

 49.54

 Codice agenda

 Streami e file ad accesso diretto

 I file ad accesso diretto sono modellati da oggetti della classe

 RandomAccessFile
 In tali file è possibile scrivere o leggere dati in corrispondenza di specifiche posizioni
 del supporto. La classe implementa i metodi delle interfacce

 Datalnput e DataOutput
 Il file viene visto come sequenza di byte, con un indice (file pointer) che identifica la
 posizione per la successiva operazione di I/O. Dopo una operazione di I/O, la
 posizione del file pointer viene aggiornata.

 Costruttori

 o RandomAccessFile (String name. String mode)

 o RandomAccessFile (File file, String mode)

 Il parametro mode stabilisce se il file va aperto in sola lettura, nel caso il suo valore
 sia "r", oppure sia in lettura/scrittura qualora il valore sia "rw"

 317

https://replit.com/@RolandoSucco/File-strutturati#LeggiAgenda.java

 Metodi

 long getFilePointer(): restituisce il valore corrente del puntatore al file, valutato
 conteggiando il numero di byte che lo separano dall'inizio dello stream

 -void seek (long pos): assegna al puntatore il valore pos, indicante la posizione del
 byte in corrispondenza al quale effettuare la successiva operazione di lettura o di
 scrittura.

 void closel)

 int skipBvtes(int n) :Salta n bvtes di input

 Metodi in lettura

 int read()//Legge un byte dal file

 int read(byte b[]) //Legge b.lenght byte da questo file e li mette in un array di byte

 int read(byte b[], int off, int len) //Legge len byte dal file e li mette in un array iniziando
 da off

 boolean readBoolean()

 byte readByte()

 char readChar() //Legge un unicode carattere

 double readDouble()

 float readFloat()

 int readInt()

 String readLine() //Legge la prossima linea di testo dal file

 short readShort() // Legge un 16-bit con segno numero

 Metodi di scrittura

 void writeBoolean (boolean v)

 318

 void writeByte(int v)

 void writeBytes (String s) //scrive la stringa in un file come sequenza di bytes

 void writeChar (int v)

 void writeDouble(double v)

 void writeFloat(float v)

 void writeInt(int v)

 void writeLong (long v)

 void writeshort(int v)

 import java.io.*;
 import java.util.Scanner;
 public class Main{

 public static void main (String arg[]) throws IOException{

 FileOutputStream outF = new FileOutputStream ("FileDiProva");

 //scriviamo l'alfabeto sul file

 for (char ch = 'a' ; ch <= 'z' ; ch++)

 outF.write (ch);

 outF.close();

 // Lettura file ad accesso diretto

 RandomAccessFile inpF = new RandomAccessFile ("FileDiProva" , "r");

 long j=inpF.length()- 1 ;

 System.out.println("inserisci da quale byte si vuole leggere da 2

 a " +j);

 Scanner tastiera= new Scanner(System.in);

 int i=tastiera.nextInt();

 for (int k = i; k >= 0 ; k--) {

 inpF.seek (k);

 char ch = (char) inpF.readByte();

 System.out.print (ch);

 }

 319

 inpF.close();

 }

 }

 Prova il Codice

 320

https://replit.com/@RolandoSucco/File-accesso-random#Main.java

 La gestione delle date

 Quando si scrive un programma capita di utilizzare le date e gli orari. Alcuni esempi
 di utilizzo delle date sono:

 ● data di nascita
 ● data di una fattura
 ● data di un ordine di acquisto o di vendita
 ● data di un evento

 Quando si lavora con le date bisogna considerare diversi fattori, tra cui:

 1. Il formato della data (dd/mm/yyyy o yyyy/mm/dd...
 2. Il fuso orario

 Le classi java per la gestione delle date sono:

 1. java.sql.Timestamp
 2. java.util.Date
 3. java.util.Calendar
 4. java.util.GregorianCalendar
 5. java.text.SimpleDateFormat
 6. java.time

 321

 La prima classe usata per trattare le date era la classe:

 Classe Date

 java.util.Date
 Questa classe rappresenta l'intervallo di tempo espresso in millisecondi che va dal 1
 gennaio 1970 al momento di creazione dell'oggetto Date. L'istante temporale viene
 calcolato in base al default time della JVM.

 Con la versione di java 1.2 è stato introdotta la classe:

 java.util.Calendar

 ma la situazione non è migliorata di molto in quanto anche questa classe ha gli
 stessi problemi di Date e cioè:

 o E' mutabile, mentre una data dovrebbe essere auspicabilmente immutabile

 o Entrambe rappresentano intervalli di tempo

 o I mesi partono da 0. Generando confusione

 Le classi di utilità per formattare le date si possono usare solo con Date e non con
 Calendar. Non sono thread-safe e quindi inadatte, senza gli adeguati accorgimenti,
 in applicazioni concorrenti.

 In Java 8 è disponibile una nuova API iava.time che risolve molte limitazioni presenti
 nelle precedenti versioni di Java.

 Tuttavia queste classi sono comunque importanti visto che tutto il codice Java scritto
 sino all'avvento di Java 8 ne ha fatto uso.

 322

 I costruttori di un oggetto Date:

 Date(): Crea un oggetto di tipo date e lo inizializza in modo che rappresenti il
 momento in cui è stato assegnato misurato al millisecondo più vicino.

 Date(long date): Crea un oggetto di tipo date e lo inizializza in modo che
 rappresenti il numero specificato di millisecondi dal tempo base standard noto come
 "l'epoca", ovvero 1 gennaio 1970, 00:00:00 GMT.

 import java.util.Date;
 public class Main {
 public static void main(String[] args) {
 Date dataA = new Date();
 System.out.println(dataA);

 }
 }

 Questo codice crea un oggetto che contiene la data attuale e la stampa.

 Metodi

 La maggior parte dei metodi e dei costruttori della classe java.util.Date sono
 deprecati, questo significa che si deve evitare di utilizzarli nello sviluppo di nuovi
 programmi.

 Per questo motivo per operare correttamente con un oggetto di classe Date, bisogna
 farlo utilizzando altre classi, quali:

 323

 1. DateFormat
 2. SimpleDateFormat.
 3. Calendar

 Se si preferisce memorizzare le date come oggetti di tipo Date, si riesce a evitare
 l'utilizzo di metodi deprecati facendo la conversione tra gli oggetti Date e Calendar,
 quando di devono manipolare le date.

 La classe DateFormat

 Questa classe è utile per ottenere la conversione di un oggetto di tipo Date in una
 stringa di testo utilizzando diversi stili di visualizzazione, attraverso l’uso di quattro
 constanti definite nella stessa classe. Le costanti degli stili di visualizzazione di una
 data sono:

 STILE ESEMPIO

 DateFormat.SHORT 04/12/21

 DateFormat.MEDIUM 4-dic-2021

 DateFormat.LONG 4 dicembre 2021

 DateFormat.FULL sabato 4 dicembre 2021
 Alcuni metodi utili:

 DateFormat getDateInstance(int stile, Locale unLocale) – metodo statico che
 istanzia un oggetto di classe DateFormat secondo un fissato stile di visualizzazione
 della data; richiede due parametri: il primo imposta lo stile (vedi tabella precedente),
 il secondo imposta la localizzazione (vedi esempi seguenti).

 String f ormat(Date data) – converte un oggetto di classe Date, in una data sotto
 forma di una stringa (String).

 Date parse(String data) – converte una data fornita come String, in un oggetto di
 classe Date. Se la stringa non può essere convertita lancia un’eccezione di classe
 ParseException . Affinché però nella conversione questo metodo possa segnalare in
 maniera rigorosa tutti gli errori, è necessario impostare opportunamente il metodo
 setLenient().

 void setLenient(boolean element) – imposta il tipo di controlli da effettuare durante
 la conversione di una stringa in un oggetto di classe Date e quindi se segnalare o
 meno alcuni errori di conversione. Richiede un parametro booleano da impostare su

 324

 false se si vuole che il metodo parse() non sia clemente, ma al contrario rigoroso, nel
 calcolo e quindi conversione della data (es. non accetterà una data del tipo
 31/02/2021, che per default invece viene accettata e interpretata come 03/03/2021.

 Il seguente spezzone di codice istanzia un oggetto Date con la data corrente e la
 visualizza a video nel formato SHORT:

 Date d = new Date();

 DateFormat formatoData;

 formatoData = DateFormat.getDateInstance(DateFormat.SHORT,

 Locale.ITALY);

 String s = formatoData.format(d);

 System.out.println(s);

 Il codice seguente stampa la data odierna senza formattazione e con le diverse
 formattazioni dovute ai diversi stili.

 import java.util.*;

 import java.text.DateFormat;

 public class Main {

 public static void main (String[] args){

 Date data= new Date(); //crea la data corrente

 System.out.println(data); //senza formattazione

 int formati[] = {DateFormat.SHORT,DateFormat.MEDIUM,

 DateFormat.LONG, DateFormat.FULL};

 for (int f : formati) {

 DateFormat formatoData = DateFormat.getDateInstance(f,

 Locale.ITALY);

 String s = formatoData.format(data); //effettua la

 conversione di date in String

 System.out.println(s);

 }

 }

 }

 325

 Il codice che segue utilizza il metodo parse(String data) per trasformare una stringa
 in un oggetto Date.

 import java.util.*;

 import java.text.DateFormat;

 import java.text.ParseException;

 public class Main {

 public static void main (String []args){

 String s;

 Date d = null ;

 //si procura la data sotto forma di una stringa

 nel formato SHORT

 System.out.println("Inserisci la data

 [gg/mm/yyyy]: ");

 Scanner in = new Scanner(System.in);

 s = in.nextLine();

 //converte la stringa della data in un oggetto di

 326

 classe Date

 try {

 DateFormat formatoData =

 DateFormat.getDateInstance(DateFormat.SHORT,

 Locale.ITALY);

 //imposta che i calcoli di conversione della

 data siano rigorosi

 formatoData.setLenient(false);

 d = formatoData.parse(s);

 } catch (ParseException e) {

 System.out.println("Formato data non

 valido.");

 }

 //visualizza la data non formattata

 System.out.println(d);

 }

 }

 La classe SimpleDateFormat

 La classe SimpleDateFormat è una classe derivata dalla classe DateFormat, quindi,
 eredita i metodi pubblici della superclasse, ai quali si aggiungono i propri. La classe
 SimpleDateFormat consente di definire dei pattern personalizzati per l'output.

 Costruttori

 SimpleDateFormat () formato della data per le impostazioni locali predefinite.

 SimpleDateFormat (String pattern) formato della data secondo il pattern.

 SimpleDateFormat (String pattern, DateFormatSymbols formatSymbols)
 formato della

 data usando il modello e i simboli di formato data indicati.

 327

 SimpleDateFormat (String pattern, Locale locale) formato della data specificando
 i simboli del formato per le impostazioni locali specificate.

 String pattern = "dd-MM-yyyy" :

 SimpleDateFormat formato;

 formato = new SimpleDateFormat (pattern);

 String data = formato.format (new Date ());

 System.out.println(data);

 È possibile analizzare una stringa e trasformala in un oggetto Date utilizzando il
 metodo

 parse() dell'oggetto SimpleDateFormat.

 Esempio:

 String pattern = "dd-MM-yyyy" ;

 SimpleDateFormat formato = new SimpleDateFormat

 (pattern);

 Date data = SimpleDateFormat.parse("09-03-1963");

 System.out.println(data);

 Fuso orario

 Gli esempi mostrati utilizzano il fuso orario predefinito del sistema.

 328

 E possibile impostare il fuso orario utilizzando il metodo:

 seTimeZone()
 di un oggetto SimpleDateFormat .

 Il metodo setTimeZone () accetta come parametro un'istanza java.util.Timezone.
 Ecco un esempio che mostra come impostare il fuso orario:

 SimpleDateFormat formato = new SimpleDateFormat("dd/MM/yyyy HH: mm:
 ssZ");

 formato.setTimeZone(TimeZone.getTimeZone("Europe/Rome"));

 import java.util.*;

 import java.text.*;

 public class Main {

 public static void main (String[] args) {

 Date data= new Date();

 SimpleDateFormat df = new SimpleDateFormat("dd-MM-yyyy

 HH:mm:ssz");

 df.setTimeZone (TimeZone.getTimeZone("Europe/Rome"));

 System.out.println("Fuso orario di roma:" +

 df.format(data));

 df.setTimeZone

 (TimeZone.getTimeZone("Europe/London"));

 System.out.println("Fuso orario di Londra:" +

 df.format(data));

 }

 }

 Output:

 Fuso orario di roma:05-12-2021 10:51:31CET
 Fuso orario di Londra:05-12-2021 09:51:31GMT

 329

 Calendar e GregorianCalendar

 La classe Calendar è una classe astratta che definisce tutti i metodi per la gestione e
 manipolazione delle date.

 Ad esempio, può:

 1. Aggiungi un mese o un giorno alla data corrente
 2. Controllare se l'anno è bisestile;
 3. Restituire singoli componenti della data (ad esempio, estrarre il numero del

 mese da una data intera)

 Un altro importante potenziamento della classe Calendar è la costante
 Calendar.ERA, con cui è possibile indicare una data antecedente all'era volgare (BC
 - prima di Cristo) o all'era volgare (AD - Anno Domini).

 La classe Calendar non può essere istanziata perché è una classe astratta, quindi
 per il suo utilizzo è necessario fare riferimento a una sua implementazione. Per
 ottenere un'istanza della classe Calendar si può:

 1. Utilizzare il metodo statico getInstance() della classe Calendar che restituisce
 un'istanza di Calendar in base all'ora corrente nel fuso orario predefinito con le
 impostazioni internazionali predefinite.

 2. Utilizzare la classe java.util.GregorianCalendar che è un'implementazione
 della classe Calendar. new GregorianCalendar(); inizializza il calendario con la
 data e l'ora correnti nel fuso orario con le impostazioni internazionali del
 sistema operativo:

 Esempio:

 Calendar data = Calendar.getInstance();

 Calendar data2 = new GregorianCalendar();

 Si inizializza l'oggetto Calendar con la data e l'ora predefinite in base alle
 impostazioni internazionali del sistema operativo.

 È possibile anche specificare una combinazione di data, ora locale e fuso orario per
 far questo la classe astratta fornisce dei metodi per la conversione della data tra uno

 330

 specifico istante temporale e una serie di campi del calendario come: MONTH,
 YEAR. HOUR, ecc. E la classe GregorianCalendar mette a disposizione vari
 costruttori.

 Metodi di calendar

 Calendar.getInstance0): Calendar.getInstance (TimeZone zona)

 Calendar.getInstance (Locale aLocale)

 Calendar.getInstance (TimeZone zona, Locale aLocale)

 Costruttori di GregorianCalendar

 new GregorianCalendar(2018, 6, 27, 16, 16, 47); si specifcano l'anno, il mese, il
 giorno, l'ora di inizio, il minuto e il secondo per il fuso orario predefinito con le
 impostazioni internazionali predefinite.

 new GregorianCalendar(T imeZone.getTimeZone("GMT+5:30")) ; Si passa il fuso
 orario come parametro per creare un calendario in questo fuso orario con le
 impostazioni internazionali predefinite.

 new GregorianCalendar(new Locale("en", "IN")); Si passano le impostazioni
 internazionali come parametro per creare un calendario in questo locale con il fuso
 orario predefinito.

 new GregorianCalendar(TimeZone.getTimeZone("GMT+5:30"), new
 Locale("en", "IN")); Si passano sia il fuso orario che le impostazioni locali come
 parametri.

 331

 Metodi

 Codice

 332

https://replit.com/@RolandoSucco/Calendario#Main.java

 ● Il campo MONTH della classe Calendar non va da 1 a 12 ma da 0 a 11, dove 0
 è gennaio e 11 dicembre.

 ● Il giorno della settimana va da 1 a 7 , ma domenica, e non il lunedì è il primo
 giorno della settimana.

 ● 1 = domenica, 2 = lunedì, 7 = sabato.

 Per ottenere informazioni sull'ANNO, MESE, GIORNO e ORA si utilizza il metodo:

 get()
 passandogli come paramentro le costanti statiche definite nella classe (YEAR,
 MONTH, DAY, ..)

 int anno = dataAttuale.get(GregorianCalendar.YEAR);
 int mese = dataAttuale.get(GregorianCalendar.MONTH) + 1;//i mesi
 partono da 0
 int giorno = dataAttuale.get(GregorianCalendar.DATE);
 int ore = dataAttuale.get(GregorianCalendar.HOUR);
 int minuti = dataAttuale.get(GregorianCalendar.MINUTE);
 int secondi = dataAttuale.get(GregorianCalendar.SECOND);
 La classe GregorianCalendar implementa dei metodi per effettuare confronti ed
 operazioni con le date. Di seguito sono riportati a cuni esempi.

 Confronto di due date

 GregorianCalendar data1 = new GregorianCalendar(2008 ,

 11 , 18);

 GregorianCalendar data2 = new GregorianCalendar(2007 ,

 11 , 10);

 if (data1.before(data2)) {

 System.out.println("data 1 precede data 2"):

 } else if (data1.after(data2)) f

 System.out.println("data2 precede data 1"):

 felse{

 System.out.println("Le date sono uguali");

 333

 I campi del calendario possono essere modificati usando i metodi:

 add (), roll () e set ().
 Il metodo add () : ci consente di aggiungere tempo al calendario in un'unità
 specificata in base al set di regole interne del calendario, L'esecuzione del metodo
 adì () impone un ricalcolo immediato dei millisecondi del calendario e di tutti i campi.

 Il metodo roll() : aggiunge una quantità al campo del calendario specificato senza
 modificare i campi più grandi.

 il metodo set (): permette di impostare direttamente un campo del calendario su un
 valore specificato Il valore temporale del calendario in millisecondi non viene
 ricalcolato fino a quando non viene effettuata la chiamata successiva a get (),
 getTime (), add () o roll ().

 Pertanto, più chiamate a set () non attivano calcoli superflui.

 Codice

 Il metodo add() non ha solo causato la modifica del mese: anche l'anno è cambiato
 dal 2021 al 2020

 334

https://replit.com/@RolandoSucco/CalendarioModifica#Main.java

 output:
 data scelta: Mon Jan 25 19:42:12 UTC 2021
 due mesi prima con il metodo roll()):Thu Nov 25 19:42:12 UTC 2021

 Codice

 Un altro aspetto interessante di questa classe è lavorare con le ere. Per creare una
 data "BC", si utilizza il campo Calendar.ERA.

 Per creare la data di nascita di Giulio Cesare 15 marzo 44 a.C.

 import java.text.DateFormat;

 import java.text.SimpleDateFormat;

 import java.util.Calendar;

 import java.util.GregorianCalendar;

 public static void main (String[] args){

 GregorianCalendar cesare = new GregorianCalendar(44 ,

 Calendar.MARCH, 15);

 cesare.set(Calendar.ERA, GregorianCalendar.BC);

 DateFormat df = new SimpleDateFormat("dd MMM, yyy GG");

 System.out.println(df.format(cesare.getTime()));

 }

 }

 Abbiamo usato la classe SimpleDateFormat per stampare la data in un formato più
 facile da capire (le lettere "GG" indicano che vogliamo che venga visualizzata l'era).

 335

https://replit.com/@RolandoSucco/CalendarioRoll#Main.java

 336

